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Abstract— We propose a novel sequence score to determine
to what extent neural activity is consistent with trajectories
through latent ensemble states—virtual place fields—in an asso-
ciated environment. In particular, we show how hidden Markov
models (HMMs) can be used to model and analyze sequences
of neural activity, and how the resulting joint probability of
an observation sequence and an underlying sequence of states
naturally lead to the development of a two component sequence
score in which the sequential and contextual information are
decoupled. We also show how this score can discriminate
between true and shuffled sequences of hippocampal neural
activity.

I. INTRODUCTION

The activity of ensembles of neurons within the hippocam-
pus is thought to enable the memory formation, storage,
and recall and even potentially decision making. Temporally-
ordered, sequential activity of these neurons is thought to
enable associations across time and episodic memories that
span longer periods. As hippocampal neural activity is com-
municated to nearly the entire neocortex, variability in these
sequences may potentially have a significant impact. Despite
numerous phenomenological expositions, our understanding
of the variability of hippocampal sequences is lacking, due
in large part to a lack of quantitative metrics of sequential
variability. Two forms of variability exist, namely variability
in the co-firing of subsets of cells (which we refer to as
contextual variability) as well as variability in the sequential
ordering of neural activity. Here we use hidden Markov
models (HMMs) to characterize sequences of neural activity,
and we use the HMM framework to derive a two component
sequence score that allows us to determine to what extent a
candidate sequence is sequentially consistent. In particular,
this score quantifies both contextual as well as sequential
(trajectory) information of putative sequences.

In rodents, hippocampal “place cells” are known to encode
an animal’s location in its environment as it explores [1].
Hence, populations of these neurons fire in sequences cor-
responding to the spatiotemporal trajectories the animals
traverse. HMMs are well suited to model this sort of se-
quential activity—even more so for behavioral correlates
of memory that are non-spatial (e.g., odors). Of particular

This work was funded by an NSF CAREER award (CBET-1351692),
an NSF BRAIN EAGER award (1550994), an HFSP Young Investigator’s
award (RGY0088), and with seed funding from the Ken Kennedy Institute
for Information Technology.

1Department of Electrical and Computer Engineering, Rice University,
Houston, TX 77005

2Department of Neuroscience, Baylor College of Medicine, Houston, TX
77030

∗Corresponding author email: era3@rice.edu

interest are hippocampal replay events in which neurons
recapitulate their spatially ordered sequences during periods
of quiescence or sleep. However, in this paper we limit our
attention to sequences of neural activity for which behavioral
correlates (the animal’s position as a function of time) are
known, so that we can evaluate the efficacy of our novel
sequence score with ground truth data.

A recent study used a HMM to study population activity
in the hippocampus during spatial navigation [2], where they
showed that nonparametric Bayesian extensions to the HMM
were useful to dynamically infer the number of hidden states
in the model. However, they did not explicitly describe ways
to score candidate sequences, and did not discuss how this
approach can apply to replay.

In studies of replay, the “quality” of a candidate sequence
has been evaluated by comparison to a firing rate model
constructed using average neural responses over multiple
behaviorally-correlated ensemble firing instances. Specific
metrics have included a combinatorial approach where it
was determined how many cells in a sequence could fire
out of place but still be considered a “valid” sequence (see
e.g. [3]) and the quality-of-fit of a decoded position [4], [5].
These approaches critically rely on the availability of non-
neural behavioral data to properly generate models. What if
we don’t have access to this data?

Here we describe how we can use the HMM framework
to use only ensemble activity to effectively learn consistent
underlying hidden states which we demonstrate correspond
with behavioral correlates when they are available. We also
demonstrate how our novel sequence score can be used to
determine to what extent the neural activity is consistent with
trajectories through the latent ensemble states or virtual place
fields in an associated environment.

II. HIDDEN MARKOV MODELS OF NEURAL ACTIVITY

HMMs are statistical models where the systems being
modeled are Markov chains (or more generally Markov pro-
cesses) with unobserved or hidden states, and they have been
widely used for sequential pattern recognition and processing
in fields ranging from speech recognition to bioinformatics
(see [6] for an excellent tutorial introduction).

In this section we loosely follow the approach and notation
presented by [2] to demonstrate how HMMs can be used
to model sequential neural activity, and we also present our
two-component sequence score, which we use to characterize
sequences in terms of their sequential consistency, as well as
their contextual activity.
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A. Model specification

Let yt denote the observation at time t, where yt ∈ ZC

is a vector of spike counts for C hippocampal place cells.
It is assumed that the observations are sampled at discrete,
equally-spaced time intervals, so that t can be an integer-
valued index, with some associated ∆t.

We further assume that the hidden state space is discrete.
That is, St ∈ {1, . . . ,m} can take on one of m possible
states, with each possible state loosely corresponding to a
particular location in the environment (a “virtual place cell”).

To define a probability distribution over sequences of
observations, we then need to specify a probability distri-
bution over the initial state P (S1), with πi ≡ Pr(S1 = i),
the m ×m state transition probability matrix, P, with Pij

defining P (St = j|St−1 = i), and the output or emissions
model defining P (yt|St).

We will further assume that our model is time-invariant:
the state transition probability matrix and the output model
does not change over time. The state sequences are
also assumed Markovian, so that P (St|St−1, . . . S1) =
P (St|St−1)—that is, the state sequence forms a first order
Markov chain—and we also assume that observations are
conditionally independent given the underlying states.

For the output model we assume Poisson firing statistics
for each spike train, so that the emission probability for the
ith state is modeled by a spatially varying (state-dependent)
multivariate Poisson process:

P (yt|St = i; θ) =

C∏
c=1

P (yc,t|St = i; θ)

=

C∏
c=1

m∏
j=1

P (yc,t|St = j; θ)St,i

=

C∏
c=1

m∏
j=1

(
exp(−λjc)λ

yc,t

jc )

yc,t!

)St,i

where θ = {π,P,Λ} are the model parameters, Λ ∈ Rm×C

are the tuning curve parameters (a spike firing rate λ for
every possible state j ∈ {1 . . .m} for each place cell c ∈
{1, . . . C}), and St,i = 1 iff St = i, and 0 otherwise.

Given a training set D = {y(1)
1:T1

, . . . ,y
(N)
1:TN
}, contain-

ing N sequences of observations, and since the training
sequences are assumed to have been drawn independently,
the complete data likelihood takes the form

P (D,S|θ) =

N∏
n=1

P
(
y
(n)
1:Tn
|θ, S(n)

1:Tn

)
P
(
S
(n)
1:Tn

)
. (1)

The model parameters θ = {π,P,Λ} can then be estimated
using standard methods such as expectation maximization,
variational Bayes, or Monte Carlo methods (the solutions
presented in [6] use expectation maximization, for example).

Making the dependence on θ implicit, the joint distribution
of a sequence of states and the resulting observations can

then be factored as follows:

P (S1:T ,y1:T ) = P (S1)P (y1|S1)

T∏
t=2

P (St|St−1)P (yt|St),

(2)
which is equivalent to

P (S1:T ,y1:T ) =

[
P (S1)

T∏
t=2

P (St|St−1)︸ ︷︷ ︸
sequential (seq)

][ T∏
t=1

P (yt|St)︸ ︷︷ ︸
contextual (ctx)

]
.

(3)
We base our novel sequence score on (3).

B. Sequence scoring

Scoring [replay] sequences allow us to determine if they
are consistent with sequences observed during active be-
havior. More specifically, we are interested in evaluating
(i) how well a particular sequence of observations fit in
an underlying context, and (ii) how well that sequence
captures the sequential nature of an associated (experienced
or imaginary) trajectory through the environment, and (iii)
we want to be able to compare different sequences (possibly
of different lengths) to each other using these criteria.

1) Existing sequence and replay scores: Probably the
most widely used scores for replay sequences include the
“replay score” by [4], and the weighted correlation, defined
as Pearson’s product-moment correlation weighted by the
decoded posterior probability [7]. A decoding-free approach
was also presented by [8]. More recently, [5] summarized six
previously used metrics, namely the (i) weighted correlation,
(ii) maximum jump distance, (iii) slope of the best linear
fitted trajectory along the entire track, (iv) aforementioned
replay score, (v) sharpness of decoded probability, and (vi)
position occupancy. They found that the maximum jump
distance along with correlation were the strongest differ-
entiating factors. The jump distance captures the continuity
of movement, while the correlation captures the population
neural activity (including both sequential and contextual
information).

However, the maximum jump distance is a very coarse
metric, and the weighted correlation mixes a lot of sequential
information into the contextual component. The abovemen-
tioned scores also generally assume linear, constant velocity
motion, and some require several empirical filtering steps,
so that a more elegant and more general solution is needed.
Our novel two component score is an attempt to improve on
these existing scores.

2) Novel sequence score: We consider the contextual and
sequential factors of the joint distribution of a (known) se-
quence of states and its associated sequence of observations,
as given in (3), and we modify them as follows:

qctx =
1

T

T∑
t=1

max
S

{
logP (yt|S)

}
and (4)

qseq = log |S|+ 1

T

(
logP (S1) +

T∑
t=2

logP (St|St−1)

)
(5)
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where |S| denotes the cardinality of the set of states visited:
S = {St}Tt=1. That is, |S| is simply the number of unique
states visited in the sequence, but since the true state se-
quence might be unknown, we will use the Viterbi sequence
to determine the most likely sequence of states instead. Here
we also divide the log probabilities by the sequence length,
T , to normalize the scores for sequences of different lengths.

Note that in evaluating the contextual component (which
tells us how well the neural activity matches the tuning
curves associated with the virtual place fields) of a sequence,
we evaluate the probabilities using the symbol-by-symbol
memoryless maximum a posteriori (MAP) state estimates at
each time point: we do this so that the contextual score is
free from any model-imposed trajectory structure, and only
depends on the unordered, spatially independent population
activity in any given context.

III. RESULTS

To demonstrate the efficacy of our novel sequence score
in discriminating true sequences from random data, we used
data from the online repository CRCNS.org. In particular,
we used the hippocampal data set hc-3, with animal gor1
which ran on two linear tracks per day1 (see [9] for details).
Here, results are shown for the second session of day one,
but similar results are obtained for every session2.

A. Model selection and validation
Completely specifying the model requires us to fix (i) the

number of states, (ii) the time bin size, and (iii) the velocity
threshold for classifying the animal’s behavioral state as
either active or inactive. To further facilitate model selection,
the data was split into train, validation, and test sets. Only the
train data was used to train the HMM while the validation
set was used to determine a suitable number of states, and
the test set was used for reporting final decoding accuracy.

A time bin of 125 ms was chosen because (i) it is fast
enough to capture the behavioral dynamics of the animal,
and (ii) it captures a full theta cycle (≈ 8 Hz in rodents).
Similarly, a running velocity of 8 units/second was chosen
so that the running behavior corresponded primarily to
traversals on the track3.

As shown in Fig. 1 there is very little improvement in the
data log likelihood (of the validation set) after about m = 25
states, which we then used for all subsequent analyses.

To verify that the learned model states correspond to
spatial behavioral correlates, we determined their spatial
selectivity by associating decoded states with the animal’s
true position (which was never shown to the model!). In this
way we can visualize where each state is active as shown
in Fig. 2. Indeed, the learned model states show remarkable
spatial selectivity, reminiscent of real place cell fields.

1The linear tracks are actually the same track, just in a different posi-
tion/orientation.

2The second session was chosen for this day, since the position data for
the first session are incomplete.

3It is important to note that even though we only present results for
these parameter values, we have repeated the analysis on a wide range of
parameters, all of which yielded comparable results. In other words, this
analysis is relatively insensitive to the actual parameter choices.

Fig. 1. Model selection; model log likelihood reaches a plateau (on both
the validation and test sets) at around m = 25 states.

Fig. 2. Place fields corresponding to latent ensemble states, ordered by
peak location on the track. Only x-dimension considered. Bottom shows
actual (x, y) coordinates of animal.

As a final validation step, we used the HMM and the
place fields of Fig. 2 to decode (symbol-by-symbol MAP)
trajectories from the test set (which were never seen by the
model). An example of a decoded sequence is shown in
Fig. 3, and the entire test set had an RMSE of 5.60 units.

B. Sequence score results

Using this HMM, we computed the contextual and se-
quential scores for the remaining subsequences during active
behavior. The scores are shown in Fig. 4 where the sequences
are clearly separated from the trajectory-shuffled data. The
trajectory shuffle only shuffles the binned spike count data so
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Fig. 3. Example of a decoded sequence from the test set; RMSE = 4.31.

that the time bins are out of sequence. This type of shuffle
should make it more difficult to discriminate between real
and shuffled sequences than other commonly used shuffling
strategies including the unit identity shuffle (see e.g. [4]),
since unlike most shuffling strategies, the trajectory shuffle
leaves the correlations between place cells unaltered.

Fig. 4. Sequence scores for previously unseen sequences and trajectory-
shuffled versions of those sequences. Note that the contextual component is
invariant to trajectory-shuffling, and that the sequential component clearly
discriminates between true and shuffled sequences.

Aside from the few samples close to the margin (which
are there mostly due to being short sequences), the sequential
component alone effectively discriminates true sequences
from shuffled data.

IV. DISCUSSION

The results are shown for sequences during active behavior
to facilitate a comparison to ground truth data. However,
the idea is to use this sequence score for replay analysis,
where the imagined position is unobservable. The ability to
train these HMMs in the absence of any behavioral correlates
really sets them apart from the conventional template match-
ing and Bayesian decoding approaches for which having
behavioral data is a prerequisite.

It is encouraging that the factorization of the joint dis-
tribution of (3) naturally leads to the sequential and con-

textual factors, and that [5] found the maximum jump
distance (= sequential information) and weighted correlation
(= contextual information) the most useful in discriminating
between real sequences and random data. However, our score
is a refinement of these ideas where the sequential component
summarizes the sequential nature of the entire sequence,
and not just the single worst time bin, as is the case for
the maximum jump distance, and our contextual component
mixes less of the sequential information than the weighted
correlation.

Indeed, our two component score (i) is easy to interpret
(without the need to first compare them to scores obtained
from shuffle distributions), (ii) accommodates sequences of
different lengths, (iii) is appropriate for complex environ-
ments without modification (including nonlinear movement,
both in terms of speed and trajectory), and (iv) directly
penalizes sequences of neural activity for which an animal
is almost stationary.

V. CONCLUSION

HMMs are ideally suited for sequential analysis, and even
more so in the case of replay, where the underlying states are
unobservable. We have shown how HMMs can be used to
model and analyze neural activity, and we have shown how it
leads to our novel two component sequence score, which is
interpretable even in the absence of scores of shuffled data,
and which can easily discriminate between real sequences
and shuffled data. We will use this score to perform replay
detection and analysis, and we believe that our score is an
improvement on (refinement of) the two metrics used by [5].
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