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Abstract Place cell activity of hippocampal pyramidal cells has been described as the cognitive11

substrate of spatial memory. Replay is observed during hippocampal sharp-wave-ripple-associated12

population burst events (PBEs) and is critical for consolidation and recall-guided behaviors. PBE13

activity has historically been analyzed as a phenomenon subordinate to the place code. Here, we14

use hidden Markov models to study PBEs observed in rats during exploration of both linear mazes15

and open fields. We demonstrate that estimated models are consistent with a spatial map of the16

environment, and can even decode animals’ positions during behavior. Moreover, we demonstrate17

the model can be used to identify hippocampal replay without recourse to the place code, using18

only PBE model congruence. These results suggest that downstream regions may rely on PBEs to19

provide a substrate for memory. Additionally, by forming models independent of animal behavior,20

we lay the groundwork for studies of non-spatial memory.21

22

Introduction23

Large populations of neurons fire in tandem during hippocampal sharp-waves and their accom-24

panying CA1 layer ripple oscillations (Buzsáki, 1986). By now, multiple studies have shown that25

during many sharp-wave ripple-associated population burst events (PBEs), hippocampal “place cells”26

(O’Keefe, 1976) fire in compressed sequences that reflect the firing order determined by the se-27

quential locations of their individual place fields (Diba and Buzsáki, 2007; Foster and Wilson, 2006;28

Lee and Wilson, 2002; Nádasdy et al., 1999). While the firing patterns during active exploration are29

considered to represent the brain’s global positioning system and provide a substrate for spatial30

and episodic memory, instead it is the synchronized activity during PBEs that is most likely to affect31

cortical activity beyond the hippocampus (Buzsáki, 1989; Carr et al., 2011; Diekelmann and Born,32

2010; Siapas and Wilson, 1998). Likewise, widespread activity modulation is seen throughout the33

brain following these sharp-wave ripple population bursts (Logothetis et al., 2012).34

The literature on PBEs has largely focused on developing templates of firing patterns during35

active behavior and evaluating the extent to which these templates’ patterns are reprised during36

subsequent PBEs. But what if the fundamental mode of the hippocampus is not the re-expression37

of place fields, but rather the PBE sequences during sharp-wave ripples (SWRs)? PBE sequences are38

enhanced during exploration of novel environments (Cheng and Frank, 2008; Foster and Wilson,39

2006), they presage learning-related changes in place fields (Dupret et al., 2010), and appear to be40

critical to task learning (Ego-Stengel and Wilson, 2010; Girardeau et al., 2009; Jadhav et al., 2012).41
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Here, we examine the information provided by CA1 and CA3 pyramidal neurons, the output nodes42

of the hippocampus, through the looking glass of PBE firing patterns.43

We developed a technique to build models of PBE sequences strictly outside of active exploration44

and independent of place fields and demonstrate that this nevertheless allows us to uncover spatial45

maps. Furthermore, these models can be used to detect congruent events that are consistent46

with replay but without any explicit place cell template. Our technique therefore provides new47

possibilities for evaluating hippocampal output patterns in single-trial and other fast learning48

paradigms, where a reliable sequential template pattern is not readily available. Overall, our work49

suggests that a sequence-first approach can provide an alternative view of hippocampal activity50

that may shed new light on how memories are formed, stored, and recalled.51

Results52

Awake population burst events53

We began by analyzing the activity of large numbers of individual neurons in areas CA1 and CA354

of the dorsal hippocampus as rats navigated linear mazes for water reward (linear track: n = 355

rats, m = 18 sessions; previously used by Diba and Buzsáki (2007)). Using pooled multiunit activity,56

we detected PBEs during which many neurons were simultaneously active. The majority of these57

events occurred when animals paused running (speed < 5 cm/s, corresponding to 54.0% ± 20.1% sd58

of events) to obtain reward, groom, or survey their surroundings (Buzsáki et al., 1983), and were59

accompanied by SWR complexes, distinguished by a burst of oscillatory activity in the 150–250 Hz60

band of the CA1 local field potential (LFP). Because we are interested in understanding internally61

generated activity during PBEs, we included only these periods without active behavior, ensuring62

that theta sequences would not bias our results. While we identified active behavior using a speed63

criterion, we found similar results when we instead used a theta-state detection approach (not64

shown). We did not add any other restrictions on behavior, LFPs, or the participation of place cells.65

We found that inactive PBEs occupied an average of 1.8% of the periods during which animals were66

on the linear track (16.9 ± 15.1 s of 832.6 ± 390.5 s). In comparison, classical Bayesian approaches to67

understand PBE activity require the 34.8% of time animals are running (speed > 10 cm/s) on the68

track (254.4 ± 106.6 s of 832.6 ± 390.5 s) to build models of place fields.69

Learning hidden Markov models from PBE data70

Activity during PBEs is widely understood to be internally-generated in the hippocampal-entorhinal71

formation, and likely to affect neuronal firing in downstream regions (Buzsáki, 1989; Chrobak and72

Buzsáki, 1996; Logothetis et al., 2012; Yamamoto and Tonegawa, 2017). Given the prevalence of73

PBEs during an animal’s early experience, we hypothesized that the neural activity during these74

events would be sufficient to train a machine learning model of sequential patterns—a hidden75

Markov model—and that this model would capture the relevant spatial information encoded in the76

hippocampus independent of exploration itself.77

Hidden Markov models have been very fruitfully used to understand sequentially structured78

data in a variety of contexts. A hidden Markov model captures information about data in two79

ways. First, it clusters observations into groups (“states”) with shared patterns. In our case, this80

corresponds to finding time bins in which the same sets of neurons are co-active. This is equivalent81

to reducing the dimension of the ensemble observations into a discretized latent space or manifold.82

Second, it models the dynamics of state transitions. This model is Markovian because it is assumed83

that the probability to transition to the next state only depends on the current state. Critically,84

these operations of clustering and sequence modeling are jointly optimized, allowing the structure85

of ensemble firing corresponding to each of the final states to combine information over many86

observations. Given the role of the hippocampus in memory, in our hidden Markov models (HMMs),87

the unobserved latent variable presumably corresponds to the temporal evolution of a memory88

trace that is represented by co-active ensembles of CA1 and CA3 neurons. The full model will89
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Figure 1. A hidden Markov model of ensemble activity during population burst events. a. Examples of three
PBEs and a run epoch. b. Spikes during 7 example PBEs (top) and their associated (30 state HMM-decoded)
latent space distributions (bottom). The place cells are ordered by their place fields on the track, whereas the

non-place cells are unordered. The latent states are ordered according to the peak densities of the latent-state

place fields (lsPFs, see Materials and Methods). c. The transition matrix models the dynamics of the unobserved
internally-generated state. The sparsity and banded-diagonal shape are suggestive of sequential dynamics.d. The observation model of our HMM is a set of Poisson probability distributions (one for each neuron) for
each hidden state. Looking across columns (states), the mean firing rate is typically elevated for only a few of

the neurons and individual neurons have elevated firing rates for only a few states.

Figure 1–Figure supplement 1. Hidden Markov models capture state dynamics beyond pairwise co-firing.

correspond to the structure which connects all the memory traces activated during PBEs.90

The parameters of our model that are fit to data include the observation model (the cluster91

descriptions, or predicted activity of each excitatory neuron within the CA1/CA3 ensemble for a92

given state), the state transition model (the probability that the CA1/CA3 ensemble will transition93

from a start state to a destination state in the next time bin), and the initial state distribution (the94

probability for sequences to start in each given state). In prior work using HMMs to model neural95

activity, a variety of statistical distributions have been used to characterize ensemble firing during a96

specific state (the observation model, Chen and Wilson (2017); Chen et al. (2012, 2014); Deppisch97

et al. (1994); Kemere et al. (2008); Radons et al. (1994). We opted for the Poisson distribution to98

minimize the number of parameters per state and per neuron (see Materials and Methods). We99

used the standard iterative expectation-maximization (EM) algorithm (Rabiner, 1989) to learn the100

parameters of an HMM from binned PBE data (20 ms bins). Figure 1 depicts the resultant state101

transition matrix and observation model for an example linear-track session.102

Using separate training- and test-datasets (cross-validation) mitigates over-fitting to training103

data, but it is still possible for the cross-validated goodness-of-fit to increase with training without104

any underlying dynamics, e.g., if groups of neurons tend to activate in a correlated fashion. Does the105

model we have learned reflect underlying sequential structure of memory traces beyond pairwise106

co-firing? To answer this question, we cross-validated the model against both real “test” data107

and against surrogate “test” data derived from shuffling each PBE in two ways: one in which the108

binned spiking activity was circularly permuted across time for each neuron independently of the109

other neurons (“temporal shuffle”, which removes co-activation), and one in which the order of110

the binned data was scrambled coherently across all neurons (“time-swap”, which maintains co-111
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activation). Note that the second shuffle preserves pairwise correlations while removing the order112

of any sequential patterns that might be present. Using five-fold cross-validation, we compared113

learned models against both actual and surrogate test data and found that the model likelihood114

was significantly greater for real data (vs. temporal shuffle, p < 0.001, vs. time-swap, p < 0.001, n = 18115

sessions, Wilcoxon signed-rank test, Figure 1–Figure Supplement 1).116

What do the learned model parameters tell us about PBEs?117

To begin to understand what structure we learn from PBE activity, we compared our HMMs (trained118

on real data) against models trained on multiple different surrogate datasets (Figure 2a,b). These119

surrogate datasets were obtained from actual data following: 1) temporal shuffles and 2) time-120

swaps, as above, and 3) by producing a surrogate PBE from independent Poisson simulations121

according to each unit’s mean firing rate within the original PBEs. First, we investigated the sparsity122

of the transition matrices using the Gini coefficient (see Materials and Methods and Figure 2–Figure123

Supplement 1). A higher Gini coefficient corresponds to higher sparsity. Strikingly, the actual data124

yielded models in which the state transition matrix was sparser than in each of the surrogate125

counterparts (p < 0.001, Figure 2c), reflecting that each state transitions only to a few other states.126

Thus, intricate yet reliable details are captured by the HMMs. Next, we quantified the sparsity of the127

observation model. We found that actual data yielded mean firing rates which were highly sparse128

(Figure 2d), indicating that individual neurons were likely to be active during only a small fraction129

of the states. Using a graph search algorithm (see Materials and Methods), we simulated paths130

through state space generated by these transition matrices, and found that this increased sparsity131

accompanied longer trajectories (Figure 2–Figure Supplement 3) through the state space of the132

model. Thus, the state transition matrices we learn are suggestive of dynamics in which each sparse133

state is preceded and followed by only a few other, in turn, sparse states, providing long sequential134

paths through state space-consistent with spatial relationships in the environment in which the135

animal was behaving, but generated from PBEs. The increased sparsity of the observation model136

and transition matrix in the example session was representative of a significant increase over all137

remaining sessions (p < 0.05, n = 18 sessions, Wilcoxon signed-rank tests, Figure 2e,f).138

These observations indicate that PBEs inform an HMM about extant spatial relationships within139

the environment. So, next we asked how the firing patterns of neurons during actual behavior140

project into the learned latent spaces. To observe the evolution of the latent states during behavior,141

we used our model to determine the most likely sequence of latent states corresponding to decode142

the neural activity observed in 100 ms bins during epochs that displayed strong theta oscillations143

(exclusive of PBEs) when rats were running (speed > 10 cm/s; see Materials and Methods). If the144

learned model was distinct from ensemble patterns during behavior, we might expect the resulting145

state space probability distributions at each point in time to be randomly spread among multiple146

states. Instead, we found distributions that resembled sequential trajectories through the latent147

space (Figure 3a) in parallel with the physical trajectories made by the animal along the track, further148

demonstrating that the latent state dynamics learned from PBEs corresponds to an internalized149

model of physical space.150

To better understand the relationship between the latent space and physical space, we used151

the latent state trajectories decoded during running to form an estimate of the likelihood of each152

state as a function of location on the track (see Materials and Methods). These “latent-state153

place fields” (lsPFs, Figure 3b) in many ways resembled neuronal place fields and similarly tiled154

the extent of the track. This spatial localization went away when we re-estimated the lsPFs with155

shuffled positions (Figure 3c). To quantify how informative the latent states were about position,156

we used the lsPFs to map decoded state sequences to position during running periods (Figure 3d).157

In our example session, decoding through the latent space resulted in a median accuracy of 5 cm,158

significantly greater than the 47 cm obtained from shuffled lsPFs (p < 0.001, Wilcoxon signed-rank159

test, Figure 3d). When we evaluated decoding error over our full set of sessions, we observed a160

similar result (p < 0.001, Wilcoxon signed-rank test, Figure 3e, Figure 3–Figure Supplement 1). As161
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Figure 2. Models of PBE activity are sparse. We trained HMMs on neural activity during PBEs (in 20 ms bins), as
well as on surrogate transformations of those PBEs. a. (top) The transition matrices for the actual and
surrogate PBE models with states ordered to maximize the transition probability from state i to state i + 1.
(bottom) Undirected connectivity graphs corresponding to the transition matrices. The nodes correspond to

states (progressing clockwise, starting at the top). The weights of the edges are proportional to the transition

probabilities between the nodes (states). The transition probabilities from state i to every other state except

i + 1 are shown in the interior of the graph, whereas for clarity, transition probabilities from state i to itself, as
well as to neighboring state i + 1 are shown between the inner and outer rings of nodes (the nodes on the inner
and outer rings represent the same states). b. The observation matrices for actual and surrogate PBE models
show the mean firing rate for neurons in each state. For visualization, neurons are ordered by their firing rates.c. We quantified the sparsity of transitions from one state to all other states using the Gini coefficient of rows of
the transition matrix for the example session in a.. Actual data yielded sparser transition matrices than shuffles.d. The observation models—each neuron’s expected activity for each state—learned from actual data for the
example session are significantly sparser than those learned after shuffling. This implies that as the

hippocampus evolves through the learned latent space, each neuron is active during only a few states. e.
Summary of transition matrix sparsity and f. Observation model sparsity with corresponding shuffle data
pooled over all sessions/animals. (***: p < 0.001, *: p < 0.05; single session comparisons: n = 250 realizations,
Welch’s t-test; aggregated comparisons - n = 18 sessions, Wilcoxon signed-rank test).

Figure 2–Figure supplement 1. PBE model states typically only transition to a few other states.
Figure 2–Figure supplement 2. Each neuron is active in only a few model states.
Figure 2–Figure supplement 3. The sparse transitions integrate into long sequences through the state space.
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Figure 3–Figure supplement 1. Latent states capture positional code over wide range of model parameters.

our method required discretizing the state space, a potential caveat is that the number of latent162

states is a relevant parameter, which we arbitrarily chose to be 30. However, latent-state place163

fields were informative of position over a wide range of values of this parameter (Figure 3–Figure164

Supplement 1). Note that decoding into the latent space and then mapping to position resulted165

in slightly higher error than simply performing Bayesian decoding on the neural activity during166

behavior. This suggests that the latent space we learn from PBEsmay not capture all the information167

about space that is present in hippocampal activity during behavior, though this may also reflect168

the limited number of PBEs from which we can learn.169

HMM-congruent PBEs capture sequence replay170

We and others have previously described how the pattern of place cell firing during many PBEs171

recapitulates the order in which they are active when animals run on the track (Figure 4a). We172

employed the versatile and widely-used Bayesian decoding method to ascribe a replay score to173

sequential patterns during PBEs. Briefly, for each PBE, we used place-field maps to estimate a174

spatial trajectory (an a posteriori distribution of positions) in 20 ms bins. We generated surrogate175

data via a column-cycle shuffle (i.e., a circular shift across positions for each time bin (Davidson176

et al., 2009)) of the a posteriori distributions during PBEs. The real and surrogate trajectories were177

scored (see Materials and Methods), and we defined replay events as those for which the score of178

the actual trajectory was larger than a threshold fraction of the null distribution generated by the179

surrogate scores. Using this approach, we found that 57% of PBEs (1064 of 1883) were identified as180

replay beyond a threshold of 99% (median across datasets 54.2%, interquartile range = 32.8–61.0%,181

Figure 4–Figure Supplement 1). Thus, as has been reported many times (Davidson et al., 2009; Diba182
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and Buzsáki, 2007; Foster and Wilson, 2006; Karlsson and Frank, 2009), only a fraction of PBEs (but183

many more than expected by chance) represent statistically significant replay. Given that we use all184

PBEs for model learning and our models capture the structure of the environment and the patterns185

expressed by place cells during exploration, we were interested in understanding whether we could186

also use our latent-space models to find these replay events. Indeed, for many events when we187

decode trajectories through state space, they resemble the sequential patterns observed when188

we decode position using Bayesian techniques and the place cell map (Figure 4b, left). However,189

given previous evidence for replay of environments not recently experienced (Gupta et al., 2010;190

Karlsson and Frank, 2009), we hypothesized that some PBEs might contain ensemble neural activity191

which is unstructured and thus unrelated to the learned model, and that these would correspond192

to the “non-replay” events found using traditional methods.193

To assess how well the pattern of ensemble activity during individual PBEs related to the overall194

state-space model learned from PBE activity (“congruence”), we developed a statistical approach195

for identifying the subset of strongly structured PBEs. Specifically, rather than comparing real and196

surrogate PBEs, we compared the goodness-of-fit for each event to a null distribution generated197

via a computationally-efficient manipulation of the transition matrix of the model (Figure 4b);198

we row-wise shuffled the non-diagonal elements of the transition matrix to assess whether an199

individual PBE is a more ordered sequence through state space than would be expected by chance.200

Maintaining the diagonal avoids identifying as different from chance sequences which consist of few201

repeated states, marked by transitions between state i and itself. As described above, the fraction202

of events identified as replay using Bayesian decoding is strongly tied to how the null-distribution203

is generated (i.e., what shuffle is used), some secondary criteria (e.g., number of active cells, unit204

cluster quality, peak firing rate, trajectory “jumps”, etc.), and the value of the significance threshold205

arbitrarily chosen to be 90%, 95%, or 99% of shuffles in different reports. When we combined206

across datasets, we found that our transition matrix shuffle yielded a null distribution for which a207

99% confidence interval identified slightly fewer PBEs as significant than the column-cycle shuffle208

did for Bayesian decoding (Figure 4c). To make a principled comparison of Bayesian- and HMM-209

based replay detection schemes, we fixed the Bayesian-based significance threshold at 99% but210

selected the significance threshold for the HMM-congruence null distribution so that the fraction211

of replay events detected would be the same between the two schemes. Following this approach,212

we found that model-congruent/incongruent PBEs largely overlapped with the replay/non-replay213

events detected using Bayesian decoding of the place cell map (Figure 4d). Thus, using only the214

neural activity during PBEs, without access to any place cell activity, we are remarkably able to215

detect the sequential patterns typically described as “replay” based only on their consistency with216

the structure of other PBE activity.217

There were, however, also differences between the Bayesian and HMM-congruent approaches,218

including events that reached significance in one but not the other formalism. We wanted to219

understand where and why these approaches differed in identifying significant sequences. When220

we examined individual PBEs, we found sequences for which both Bayesian and model-congruence221

replay detection approaches appeared to malfunction (Figure 5a). This was not a failure of the222

choice of significance threshold, as for both techniques we found what appeared to be false-223

negatives (patterns which looked like replay but were not significant) as well as false-positives224

(patterns which looked noisy but were identified as replay). Thus, in order to quantitatively compare225

the two approaches, we asked eight humans to visually examine all the PBEs in our database. They226

were instructed to label as replay PBEs in which the animal’s Bayesian decoded position translated227

sequentially without big jumps (Silva et al., 2015, see Materials and Methods).228

We marked each event as a “true” community replay if it was identified by a majority of scorers229

(six individuals scored n = 1883 events, two individuals scored a subset of n = 1423 events, individual230

scores are shown in Figure 5–Figure Supplement 1). We calculated an receiver operating charac-231

teristic (ROC) curve which compared the rate of true positive and false positive detections as the232

significance thresholds for Bayesian and model-congruence approaches were varied (Figure 5b). A233
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Figure 4. a. Example PBEs decoded to position using Bayesian decoding. b. (left) Same examples decoded to
the latent space using the learned HMM. (right) Examples decoded after shuffling the transition matrix, and

(middle) the sequence likelihood using actual and shuffled models. c. Effect of significance threshold on the
fraction of events identified as replay using Bayesian decoding and model congruent events using the HMM

approach. d. Comparing Bayesian and model-congruence approaches for all PBEs recorded, we find statistically
significant agreement in event identification (60.9% agreement, n = 1883 events from 18 sessions, p < 0.001,
Fisher’s exact test two sided).

Figure 4–Figure supplement 1. Number of significant PBEs.

perfect detector would have an area under the curve (AUC) of unity. We did not find a significant234

difference between the AUCs of Bayesian decoding and model-congruence (p = 0.14, bootstrap,235

see Methods). If we select thresholds such that our algorithms yield a similar fraction of significant236

vs. total events as the 24% denoted by our human scorers, we find that both Bayesian and model-237

congruence yield agreement of ≈ 70% labeled events with each other and with human scorers238

(Figure 5c).239

Thus, congruence with an HMM trained only on PBEs appears to work as reliably as Bayesian240

decoding in detecting sequential reactivation of linear track behaviors. However, when we examined241

individual sessions, we noticed that performance was quite variable. Given that our models are242

learned only from PBEs, we reasoned that the statistics or structure of the PBEs within each session243

might yield models which vary in quality depending on the number of recorded units, the number244

of PBEs detected, and their self-consistency across events. We created a model quality metric by245

comparing cross-validated learning statistics to models which were learned from shuffled events246

(see Materials and Methods). We found that the performance of model-congruence detection was247

tied to model quality (R2 = 0.17, F = 2.9, n = 18 sessions, Figure 5–Figure Supplement 1). Model248

quality, in turn, was highly correlated with the number of PBEs during the session (R2 = 0.96,249

F = 392.6, n = 18 sessions, Figure 5–Figure Supplement 1). Not surprisingly, the performance of250

Bayesian decoding relative to human scorers was independent of the quality of the HMM, or the251

number of PBEs, as the place field model is learned from ensemble neural activity during running.252

Thus, we find an intriguing contrast—when there is an abundance of PBEs (indicating novelty,253

learning, hippocampus-dependent planning, etc.(Buzsáki, 2015)), even in the absence of repeated254

experience, replay detection based on PBE activity is highly effective. Conversely, when there are255

few PBEs (i.e., scenarios in which PBEs are uncorrelated with cognitive function), but an abundance256

of repeated behavioral trials, Bayesian decoding of these limited events proves more effective.257

Modeling internally generated activity during open field behavior258

The linear track environment represents a highly-constrained behavior. We therefore asked whether259

the hiddenMarkov model approach could generalize to more complex environments and behavioral260

tasks. Pfeiffer and Foster (2013, 2015) had previously recorded activity of CA1 neurons in rats as261

they explored in a 2 m × 2 m open field arena for liquid reward. Briefly, animals were trained to262

discover which one of 36 liquid reward wells would be the “home” well on a given day. They then263
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Figure 5. a. Eight examples from one session show that Bayesian decoding and HMMmodel-congruence can
differ in labeling of significant replay events. For each event, spike rasters (ordered by the location of each

neuron’s place field) and the Bayesian decoded trajectory are shown. “+” (“-”) label corresponds to significant

(insignificant) events. (left) Both methods can fail to label events that appear to be sequential as replay and

(right) label events replay that appear non-sequential. b. We recruited human scorers to visually inspect
Bayesian decoded spike trains and identify putative sequential replay events. Using their identifications as

labels, we can define an ROC curve for both Bayesian and HMMmodel-congruence which shows how detection

performance changes as the significance threshold is varied. (inset) Human scorers identify 24% of PBEs as

replay. Setting thresholds to match this value results in agreement of 70% between Bayesian and HMM

model-congruence. c. Using the same thresholds, we find ≈ 70% agreement between algorithmic and human
replay identification. (All comparison matrices, p < 0.001, Fisher’s exact test two-tailed.)

Figure 5–Figure supplement 1. Human scoring of PBEs and session quality.
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were required to alternate between searching for a randomly rewarded well and returning to the264

home well. Using the place cell map in this task and Bayesian decoding, many PBEs were decoded265

to trajectories through two-dimensional space that were predictive of behavior and shaped by266

reward. Using this same dataset, we trained a HMMs on neural activity during PBEs in the open field.267

Here, we used the same PBEs detected previously (Pfeiffer and Foster, 2013, 2015) which occupied268

an average of 2.53 ± 0.42% of the periods during which animals were behaving (77.91 ± 21.16 s out269

of 3064.86 ± 540.26 s). Given the large number of units available in this dataset and the increased270

behavioral variability in the open field environment compared to the linear track, we chose to271

estimate HMMs with 50 latent states. The transition matrix and observation model from a sample272

session are shown in Figure 6a,b. Despite the complex and varied trajectories displayed by animals,273

the HMM captured sequential dynamics in PBE activity, as in the 1D case, when we compared274

learned models against both actual and surrogate test data, we found that the model likelihood275

was significantly greater for real data (p < 0.001, Wilcoxon signed-rank test).276

In the case of the linear track, we linked sparsity of the transition matrix to the sequential nature277

of behaviors in that environment. An unconstrained, two-dimensional environment permits a much278

richer repertoire of behavioral trajectories. However, behavior is still constrained by the structure of279

space—arbitrary teleportation from one location to another is impossible. We found that learning280

from PBEs in the open field yielded transition matrices (Figure 6a) that were significantly sparser281

than models learned from shuffled data (p < 0.05, Wilcoxon signed-rank test, n = 8 sessions,282

Figure 5–Figure Supplement 1). However, consistent with increased freedom of potential behaviors,283

when we compared the sparsity of models learned from open field PBEs with 50-state models284

learned from PBEs in linear tracks, the open field transition matrices were less sparse (p < 0.001,285

Mann–Whitney U test comparing 8 and 18 sessions, Figure 4–Figure Supplement 1). Likewise,286

when we examined the observation model for the open field, we found that the activity across287

states for individual neurons was significantly more sparse than in models learned from shuffled288

data (p < 0.05, Wilcoxon signed-rank test, n = 8 sessions, Figure 6–Figure Supplement 1). The289

sparsity of linear track and open field observation models were not significantly different (p = 0.44,290

Mann–Whitney U test).291

Do the latent states learned from PBEs capture spatial information in a 2D environment? We292

used the PBE-trained model to decode run data, as in the linear track case. We found that the latent293

states corresponded with specific locations in the open field, as we expected (Figure 6c). Moreover,294

we were able to decode animals’movements with significantly greater than chance accuracy by295

converting decoded latent states to positions using the lsPF (p < 0.001, Figure 6d). Finally, we296

examined model-congruency for PBEs detected in the open field. Previously, it was reported that297

27.3% (815 of 2980, n = 8 sessions) were identified as “trajectory events” (Pfeiffer and Foster,298

2015). We chose a significance threshold to match this fraction (Figure 6–Figure Supplement 3)299

and found that there was significant overlap between the events detected through Bayesian and300

model-congruence techniques (p < 0.01, Fisher’s exact test). These events overlapped significantly301

with replay events detected using traditional Bayesian decoding (Figure 6–Figure Supplement 3).302

Thus, an HMM of the activity during population bursts captures the structure of neural activity in303

two dimensional environments during complex tasks and can be used to decode events consistent304

with trajectories through that environment.305

Extra-spatial Information306

As described earlier, while we observed a similar fraction of events to be similar by HMM-congruence307

and Bayesian decoding, there was not an exact event-to-event correspondence. An intriguing po-308

tential explanation is that the latent space represented in PBE sequential firing and captured by the309

HMM is richer than simply the spatial structure of the present environment. In most hippocampal310

ensemble recording experiments, maze or open field tasks are structured to intentionally map311

memory elements to spatial behavior, and thus this potential richness is difficult to test. We used312

two sample datasets to explore the potential of the HMM to capture extra-spatial richness in the313
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Figure 6. Modeling PBEs in open field. a. The transition matrix estimated from activity detected during PBEs in
an example session in the open field. b. The corresponding observation model (203 neurons) shows sparsity
similar to the linear track. c. Example latent state place fields show spatially-limited elevated activity in two
dimensions. d. For an example session, position decoding through the latent space gives significantly better
accuracy than decoding using the shuffled latent state place fields. e. Comparing the sparsity of the transition
matrices (mean Gini coefficient of the departure probabilities) between the linear track and open field reveals

that, as expected, over the sessions we observed, the open field is significantly less sparse (p < 0.001), since the
environment is less constrained. f. In contrast, there is not a significant difference between the sparsity of the
observation model (mean Gini coefficient of the rows) between the linear track and the open field. Note that the

linear track models are sparser than in Figure 2 due to using 50 states rather than 30 to match the open field.
Figure 6–Figure supplement 1. Open field PBE model states typically only transition to a few other states.
Figure 6–Figure supplement 2. Each neuron is active in only a few model states in the open field.
Figure 6–Figure supplement 3. lsPFs and position decoding in an open field.
Figure 6–Figure supplement 4. Examples of open field PBEs.
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PBE sequences.314

First, we considered the possibility that in the awake behaving animal, PBE activity might be315

sequential reactivation of environments other than the one being explored (“remote replay”). We316

reasoned that we could enhance the model’s representation of remote environments by filtering317

out local replay from the training data. We evaluated how the model-quality of our HMM changed318

as progressively more sequences labeled as replay by Bayesian decoding were removed from the319

training data. In the linear track sessions we considered, we found that refining the training data320

resulted in models that lowered in quality at different rates as the threshold for Bayesian replay321

was decreased (Figure 7). Most, but not all, models dropped precipitously in quality: > 50% when322

we removed events detected as Bayesian replay at a 95% threshold, as would be expected if the323

HMM represented only the local environment. In many outlier sessions in which model quality324

decreased more slowly, the initial (baseline) model quality was low. Intriguingly, however, in at least325

one outlier session where model quality decreased slowly with refinement (blue line,Figure 7a), the326

initial model quality was still high, and we further noted that position decoding using lsPFs yielded327

relatively high error (blue dot, Figure 7b). Thus, we wondered whether this and similar sessions328

might have contained non-local or extra-spatial PBEs that were captured by the HMM.329

In order to validate the concept of model-training refinement, we considered a dataset in which330

multiple environments were explored on the same day and remote replay was previously observed331

(Karlsson et al., 2015). These data consisted of a series of short exploratory sessions in which an332

animal first explored a novel maze (E1) and then was placed in a familiar one (E2). We identified333

awake PBEs during the familiar E2 session and used them to train an HMM. When we refined this334

model by removing Bayesian-significant local replay events from the training data, we found that335

the model quality decreased comparatively slowly (Figure 7a, green line), indicating that the HMM336

was capturing more than the local spatial structure. In contrast, when we used place fields from E1337

to identify Bayesian-significant remote replay events and removed these from the training data, we338

found that the model quality decreased rapidly as with the general linear track cases (Figure 7a,339

red line). When we examined individual events in detail in this data, we found many examples340

in which HMM-significant, Bayesian non-significant PBEs decoded to extended state sequences341

which turned out to correspond to reactivation of the remote track (two are shown in Figure 7c–l).342

If we imagine that in this experiment data were only recorded during exploration of the familiar343

environment, classical Bayesian decoding would treat these events as noise, as shown in the bottom344

half of the two examples. In contrast, our HMM-based analysis finds these events to be significant,345

as shown in the top half of the two examples. Thus, by combining classical Bayesian decoding and346

HMM-congruence, we are able to identify a signature of when a HMM trained on PBEs captures347

sequential structure distinct from that dictated by the local environment. Additionally, in these348

cases, we show that specific non-local reactivation events can be identified.349
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Figure 7. Examples of remote replay events identified with HMM-congruence. We trained and evaluated HMMs
on the events that were not Bayesian significant (residual events) to identify potential extra-spatial structure. a.
The normalized session quality drops as local-replay events above the Bayesian significance threshold are

removed from the data. Each trace corresponds to one of the 18 linear track sessions, with the stroke width and

the stroke intensity proportional to the baseline (all-events) session quality. The blue line identifies a session in

which model quality drops more slowly, indicating the potential presence of extra-spatial information. The

reduction in session quality for a W maze experiment with known extra-spatial information is even slower

(green). When, instead, Bayesian-significant remote events are removed, rapid reduction in session quality is
again revealed (red). b. The lsPF-based median decoding errors are shown as a function of baseline session
quality for all 18 linear track sessions. The blue dot indicates the outlier session from panel a with potential
extra-spatial information: this session shows high decoding error combined with high session quality. Session

quality of the W maze session is also indicated on the x-axis (decoding error is not directly comparable). c–n.
Two example HMM-congruent but not Bayesian-significant events from the W maze session are depicted to

highlight the fact that congruence can correspond to remote replay. c. Spikes during ripple with local place cells
highlighted (top panel) and the corresponding latent state probabilities (bottom panel) decoded using the HMM

show sequential structure (grayscale intensity corresponds to probability). d. In this event, the Bayesian score
relative to the shuffle distribution (top panel) indicates that the event is not-significant, whereas the HMM score

relative to shuffles indicates (bottom panel) the ripple event is HMM-congruent. e. Estimates of position using
local place fields show jumpy, multi-modal a posteriori distributions over space in 1D (top left panel) and 2D (top
right panel; distribution modes and time is denoted in color). Bayesian decoding using the remote environment

place fields (bottom panel) indicates that the sample event is a remote replay. Note that in a typical experiment,

only the local place fields would be available. f–h. Same as c–e, but for a different ripple event.350
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Figure 8. Temporal structure during a sleep period following object-location memory task. Using cross
validation, we calculate the HMM-congruence score (which ranges from 0 to 1) for test PBEs. For each event, we

also calculate the score of a surrogate chosen using a pooled time-swap shuffle across all test events. The

distribution of scores of actual events is significantly higher than that of the surrogate data (p < 0.001,
Mann–Whitney U test).

Finally, we considered the potential of our methodology for uncovering temporal patterns352

in PBE activity under scenarios where complex behavior does not permit identification of well-353

defined place-fields or in the absence of behavior, such as during sleep. As we have emphasized,354

a remarkable aspect of learning HMMs from PBE activity is that the model can be built entirely355

without behavioral data, so can our model capture significant sequential information outside356

of immobility periods during quiet waking? To demonstrate this potential, we examined HMMs357

trained on PBEs in sleep following the learning phase of an object-location memory task when358

animals explored three objects in an open field (see Material and Methods). Previous studies have359

demonstrated that subsequent recall of this memory is hippocampus-dependent, and requires360

consolidation in post-task sleep Prince et al. (2014); Inostroza et al. (2013). However, while this361

task involves spatial exploration of objects in an arena, whether the subsequent post-task sleep362

contains sequential structure and whether object memory is contained in this code has remained363

elusive (Larkin et al., 2014). In order to assess the presence of sequential structure in the PBEs,364

we first used cross validation to generate a distribution of sequence HMM-congruence scores. For365

each set of test PBEs, we also generated surrogates by shuffling time bins across events (pooled366

time-swap). Using our HMM-congruence score which explicitly tests for sequences through state367

space, the large difference between actual and shuffled score distributions indicates evidence for368

significant sequential structure in the PBEs (p < 0.001, Mann–Whitney U test, Figure 8). While more369

work is needed to evaluate the mnemonic relevance of these HMM-congruent sequences, these370

data support the notion that the HMM can uncover sequential activity in sleep away from the task371

environment. This approach further demonstrates the utility of the HMM approach as an initial372

analysis of a novel dataset, or as a way of comparing the sequential content encoded in PBEs during373

different periods.374

Discussion375

Increasing lines of evidence point to the importance of hippocampal ensemble activity during PBEs376

in guiding on-going behavior and active learning. Despite being the strongest output patterns of377

the hippocampus, however, this activity has been assumed to be interpretable only in the context378

of other theta-associated place cell activity expressed during behavior. Our findings demonstrate379

that over the course of a behavioral session, ensemble activity during PBEs alone is sufficient to380

form a model which captures the spatial relationships within an environment. This suggests that381

areas downstream of the hippocampus might be able to make use solely of PBE activity to form382
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models of external space. In an extreme view, place cell activity might merely subserve the internal383

mechanisms in the hippocampus which generate PBE sequences. To the extent that animals might384

wish to use the spatial code obtained from PBEs to identify their current location, we show that385

this can be done after translating ensemble activity into the latent states of the model. Do the386

PBEs contain “full information” about the environment? Bayesian decoding of location from place387

cell activity results in lower error than location estimates generated using the latent states and388

lsPFs. This suggests that the manifold defined by the HMMmay not capture all the dimensions of389

information represented during exploration. However, it is possible that with more PBE data, we390

would learn a more refined state space. Thus, the difference between the latent space represented391

during behavior and within PBEs may be an interesting focus of future study.392

When we examined the transition matrices we learned from PBEs, we found that they were393

marked by significant sparsity. This sparsity results from the sequential patterns generated during394

PBEs. Latent variable models have previously been used to analyze the structure of hippocampal395

place cell activity (Chen et al., 2012, 2014; Dabaghian et al., 2014). In these studies, the learned396

transition matrices were mapped to undirected graphs which could be analyzed using topological397

measures. It is intriguing that similar structure is apparent in PBE activity. For example, we observed398

that transition matrices learned from PBEs associated with linear track behavior were significantly399

sparser than those learned from the open field, which we hypothesize is a consequence of the400

greater freedom of behavior in the latter (a topological difference). Whether hippocampal PBE401

activity must always be sequential, i.e., evolve through a sparsely-connected latent space, is an402

open and interesting question, as are differences between the latent state space dynamics learned403

during PBEs and those learned from place cell activity.404

Graded, Non-binary Replay Detection405

Remarkably, evaluating the congruence or likelihood of test data against our HMM provided a highly406

novel method to detect events that are consistent with replay, without a need to access the “play”407

itself. In the process of evaluating the potential of HMMs for detecting replay, we developed an408

approach to compare different replay-detection strategies. Our results highlight how the data does409

not readily admit to a strict separation between “replay” and “non-replay” events. While it is possible410

that with additional shuffles or other restrictions (Silva et al., 2015), automated performance411

might be rendered closer to human-labeling, even human scorers had variation in their opinions.412

This calls into doubt judgments of memory-related functions which build on a binary distinction413

between replay and non-replay sequences. Model congruence, either as a raw statistical likelihood414

or weighted against a shuffle distribution, seems to be a very reasonable metric to associate415

with individual PBEs. Moreover, evaluating congruence with an HMM does not require access to416

repeated behavioral sequences, which may be infeasible under widely-used single- or few-trial417

learning paradigms or when the events involve replay of a remote internalized environment. Given418

these benefits, along with computational efficiency, we would suggest that future analyses of the419

downstream impact of hippocampal reactivation regress effects against this measure rather than420

assuming a binary distinction.421

Learning, Model Congruence and Replay Quality422

Not surprisingly, the rate of PBEs had a large effect on our ability to measure model congruence.423

Interestingly, it has been noted that the density of PBEs is higher during early exposure to a424

novel environment (Cheng and Frank, 2011; Frank et al., 2004; Kemere et al., 2013; Kudrimoti425

et al., 1999). This might suggest that for the animal, PBE activity could be an important source426

for generating models of the world when the animal is actively learning about the environment.427

If as hypothesized, replay is a form of rehearsal signal generated by the hippocampus to train428

neocortical modules (McClelland et al., 1995; Buzsáki, 1989), then indeed the brain’s internal429

machinery may also be evaluating whether a given sequential PBE pattern is congruent and430

consistent with previously observed PBEs. In later sessions, as animals have been repeatedly431
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exposed to the same environments, downstream regions will have already witnessed many PBEs432

from which to estimate the structure of the world. Overall, our approach provides a novel viewpoint433

from the perspective of hippocampal PBEs. An interesting future line of inquiry would be to assess434

the extent to which a model built on PBEs during first experience of a novel environment is slower435

or faster to converge to the final spatial map than models built on theta-associated place activity.436

Application to Extra-spatial Behaviors437

We have analyzed data gathered in experiments in which rats carried out simple spatial navigation438

tasks. Thus, to some extent it is not surprising that when we decoded ensemble activity during439

behavior we found that spatial positions the animal is exploring are strongly associated with the440

latent states.441

We anticipate that our approach for calculating lsPFs would be equally useful in tasks in which442

the hippocampal map is organized around time (Eichenbaum, 2014; Rodriguez and Levy, 2001) or443

other continuous variables (e.g. sound frequency (Aronov et al., 2017)). Our two proof-of-concept444

analyses, however, suggest that it should be possible to use HMMs to infer the presence of extra-445

spatial sequential reactivation in PBEs. For example, we showed that there is significant sequential446

structure during sleep after an animal explores novel objects in an environment. We anticipate that447

careful experimental design and further algorithmic development would allow for the conjunctive448

coding of object identity and spatial locations to be detected in the latent states we learn from PBEs,449

with model-congruence providing a tool to study sequential hippocampal reactivation in these450

types of tasks.451

Conjunctive, non-spatial information might be one source of the apparent variability that results452

in many PBEs not being detected as replay using traditional Bayesian decoding. Another proposed453

source of this variability is reactivation of other environments. Our second proof-of-concept analysis454

suggests that HMMs learned from PBEs can, in fact, capture the spatial structure of environments455

beyond the one the animal is currently exploring. It appears that it should be possible to use only456

the PBEs and information about the place-cell map of the local environment to refine the training457

set for remote replay activity and learn the structure of a remote environment. While we used458

Bayesian decoding to detect putative local replays, we anticipate related approaches might use an459

HMM or other approaches to model local place cell activity.460

Future possibilities461

It has been previously observed that the rate of hippocampal reactivations in PBEs during awake462

behavior is much higher than during sleep (Grosmark and Buzsáki, 2016; Karlsson and Frank,463

2008), but the reasons for this are not well understood. One hypothesis is that many sleep PBEs464

contain the reactivation of contexts other than those measured during a behavioral experiment.465

Another hypothesis is that sleep activity involves remodeling of dynamic network architectures466

(Buhry et al., 2011; Tononi and Cirelli, 2014). Our approach has the potential to illuminate some467

sources of variability during sleep. While we have given preliminary evidence that information468

about a remote context can be present in PBEs along with the local context, further work is required469

to understand how our model’s ability to capture this structure scales with the number of different470

contexts. With sufficient data, our HMM approach should be able to learn disjoint sets of latent471

states (or “sub-models”) which would capture these separate contexts and allow us to test this472

possibility. Alternatively, sleep PBEs could yield models which represent a known behavioral context473

but are markedly different (e.g., less sparse) than those learned from awake PBEs. This might474

support the network remodeling function of sleep. In the latter case, we might imagine that only a475

small subset of sleep PBEs—corresponding to learning-related replay—would be congruent with a476

model learned from awake PBE data.477
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Conclusions478

We have demonstrated a new analytical framework for studying hippocampal ensemble activity479

which enables primacy of PBEs in model formation. We use an unsupervised learning technique480

commonly used in the machine learning field to study sequential patterns, the hidden Markov481

model. This contrasts with existing approaches in which the model—estimated place fields for482

the ensemble—is formed using the theta-associated place cell activity. We find that our PBE-first483

approach results in a model which still captures the spatial structure of the behavioral tasks we484

studied. Additionally, we demonstrate that we can use model-congruence as a tool for assessing485

whether individual PBEs contain hippocampal replay. Finally, we present proofs-of-concept that this486

analytical approach can detect the presence of sequential reactivation in experimental scenarios in487

which existing approaches are insufficient. Thus, the use of unsupervised learning of latent variable488

models—specifically HMMs and statistical congruence as a marker of individual events—bears489

much promise for expanding our ability to understand how PBEs enable the cognitive functions of490

the hippocampus.491

Materials and Methods492

Experiment paradigm/Neural data recording493

We analyzed neural activity recorded from the hippocampus of rats during periods in which they494

performed behavioral tasks in different paradigms. First, we considered data from animals running495

back and forth in a linear track 150 or 200 cm long. As previously reported using these same data496

(Diba and Buzsáki, 2007), we recorded neural activity using chronically-implanted silicon probes to497

acquire the activity of hippocampal CA1/CA3 neurons. From these experiments, we chose sessions498

during which we observed at least 20 place cells during active place-field exploration, and at least499

30 PBEs (see below). Place cells were identified as pyramidal cells which had (i) a minimum peak500

firing rate of 2 Hz, (ii) a maximum mean firing rate of 5 Hz, and (iii) a peak-to-mean firing rate ratio501

of at least 3, all estimated exclusively during periods of run (as defined before, that is, when the502

animal was running > 10 cm/s). This selection yielded n = 18 session with 41–203 neurons (36–186503

pyramidal cells). All procedures were approved by the Institutional Animal Care and Use Committee504

of Rutgers University and followed US National Institutes of Health animal use guidelines (protocol505

90-042).506

A second dataset used tetrodes to record a large number (101–242) of putative pyramidal507

neurons in area CA1 during two sessions each in four rats. Briefly, as was previously reported508

using these data (Pfeiffer and Foster, 2013, 2015), rats explored an arena in which there were 36509

reward sites. In each session, one site was designated as “home”. During a session, rats would510

repeatedly alternate between retrieving a random reward site in one of the remaining 35 locations511

and retrieving a reward at the home location. All procedures were approved by the Johns Hopkins512

University Animal Care and Use Committee and followed US National Institutes of Health animal513

use guidelines (protocols RA08M138, RA11M16, and RA14M48).514

In order to investigate remote replay, we used data from an experiment in which this phe-515

nomenon has been previously reported (Karlsson and Frank, 2009). Briefly, rats were implanted516

with multi-electrode microdrives with tetrodes targeting CA1 and CA3. They were trained to carry517

out a continuous-alternation task in an initially novel “w”-shaped maze (E2) for liquid reward for518

multiple daily run sessions interspersed by rest-periods in an enclosed box. After they learned the519

task, they were introduced to a novel w-maze (E1) in a different orientation in which they had two520

run sessions followed by a run in the now-familiar E2. For our proof-of-concept analysis (Figure 7),521

we used data from the second day of the novel maze (i.e., third and fourth exposures) in animal522

‘Bon’.523

Finally, we recorded neural activity during an object-location memory task using a 32-channel524

silicon probes (Buzsaki32, Neuronexus, MI) equipped with light fibers lowered to area CA1 of the525

dorsal hippocampus. The animal was previously infused with AAV-CamKIIa-ArchT-GFP for the526
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purpose of another experiment. Putative pyramidal cells and interneurons were distinguished527

based on their spike waveforms and spike auto-correlograms. On the day before the recordings,528

the animal was repeatedly exposed to an empty test chamber on four successive six minute blocks,529

interleaved by three minute rest periods in the home cage. On the recording day, the first of these530

six-minute blocks was again the empty test chamber, but on the remaining blocks, the animal was531

exposed to a fixed configuration of three different novel objects placed in the northeast, center532

and southeast corners of the box. These blocks were again interleaved with three minute rest533

periods in the home cage. The test chamber was a 60 × 60 cm2 box with a local cue (8.5 in. ×534

11 in. sheet printout) placed on one test wall. Following the last acquisition exposure, the animal535

was returned to its home cage for a four hour extended sleep period. The subsequent day, one536

of the objects in the box was displaced and the animal was reintroduced into the box to test for537

interactions with the displaced versus non-displaced objects. All procedures were approved by538

the Institutional Animal Care and Use Committee of the University of Wisconsin-Milwaukee and539

followed US National Institutes of Health animal use guidelines (protocol 13-14 #28)540

Population burst events541

To identify PBEs in the linear track data, a spike density function (SDF) was calculated by counting542

the total number of spikes across all recorded single and multi-units in non-overlapping 1 ms543

time bins. The SDF was then smoothed using a Gaussian kernel (20 ms standard deviation, 60 ms544

half-width). Candidate events were identified as time windows with a peak SDF of at least three545

standard deviations above the mean calculated over all the session. The boundaries of each event546

were set to time points of crossing the mean, preceding and following the peak. Events during547

which animals were moving (average movement speed of > 5 cm/s) were excluded from all further548

analyses to prevent possible theta sequences from biasing our results. For analysis, we then binned549

each PBE into 20 ms (non-sliding) time bins. Spikes from putative interneurons (mean firing rate550

when moving > 10 Hz) were excluded, as were events with duration less than four time bins or with551

fewer than four active pyramidal cells. For the open field data, we used the previously reported552

criteria (Pfeiffer and Foster, 2013) for identifying PBEs prior to binning (10 ms standard deviation553

kernel, minimum of 10% of units active, duration between 50 ms and 2000 ms).554

Hidden Markov model of PBE activity555

We trained HMMs on the PBEs. In an HMM, an unobserved discrete latent state qt evolves through556

time according to a first order Markov process. The temporal evolution of the latent state is557

described by the M ×M matrix A, whose elements {aij} signify the probability after each time558

bin of transitioning from state i to state j, aij = Pr
(

qt+1 = j|qt = i
)

. The number of states, M , is a559

specified hyperparameter. We found that our results were insensitive to the value ofM through a560

wide range of values from 20 to 100 (Figure 3–Figure Supplement 1). During each time bin of an561

event, the identity of the latent state influences what is observed via a state-dependent probability562

distribution. We modeled the N-dimensional vector of binned spiking from our ensemble of N563

neurons at time t, Ot, as a Poisson process. Specifically, for each state, i, we model neuron n as564

independently firing according to a Poisson process with rate �ni.565

Pr
(

Ot|qt = i
)

=
N
∏

n=1
Pr(ont|qt = i) ∝

N
∏

n=1
(�ni)

on exp
(

−�ni
)

where ont is the number of spikes observed from neuron n at time t. The final parameter which566

specifies our model is the probability. distribution of the initial state for a given event, �i = Pr(q1 = i).567

Thus, our model is specified by parameters � = {A,�,�}, where � = {�niS} is an N ×M matrix and568

� = {�i} is an N-dimensional vector.569

To learn model parameters, we follow the well-known iterative EM procedure (Rabiner, 1989),570

treating each training PBE as an observation sequence. In order to regularize the model, we impose571

a minimum firing rate for each neuron of 0.001 (0.05 Hz) during the M-step of EM. For a given PBE572
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(i.e., observation sequence) with K bins, we use the “forward-backward algorithm” (Rabiner, 1989)573

to calculate the probability distribution of the latent state for each time bin, Pr(qt|O1,… , Ot,… , OK ).574

For a particular time bin, t, in a given sequence, the forward-backward algorithm allows information575

from all observation bins, previous and subsequent, to affect this state probability distribution576

(as well the observation bin at time t). The forward-backward algorithm also efficiently calculates577

the “score”, or likelihood of the complete sequence, Pr(O1,… , OK ). All HMMs learned in this work578

used five-fold cross validation, i.e., the PBEs were divided into five randomly selected fifths (“folds”),579

and then each fold was evaluated as a test set, with the model trained using the remaining four580

folds. We define the model likelihood of an HMM as the product of the scores of each event using581

this five-fold cross validation. To initially evaluate model learning, we compared model likelihoods582

calculated using real and shuffled test data. Models which have learned to properly represent the583

data should show significant increases. To quantify the presence of PBE sequences in a model we584

used a model quality metric as described below.585

Ordering states for visualization586

For visualization, we wanted to order the states to maximize the super diagonal of the transition587

matrix. We used a greedy approach which typically yields this solution. We started by assigning588

the first index to the state with the highest initial probability and added states based on the most589

probable state transitions. The undirected connectivity graphs were then generated from this590

transition matrix, averaging the strength of reciprocal connections, aij and aji.591

Surrogate datasets and shuffle methods592

In order to analyze the HMMs we learned, we compared them against different types of surrogate593

datasets obtained by shuffling the neural activity during PBEs in distinct ways. 1) Temporal shuffle:594

within each event, the binned spiking activity was circularly permuted across time for each unit,595

independently of other units. This goal of this shuffle is to disrupt unit co-activation, while maintain-596

ing the temporal dynamics for each unit. 2) Time-swap shuffle: within each event, the order of the597

binned columns of neural activity was randomly permuted across time, coherently across units. The598

goal of this shuffle is to change the temporal dynamics of ensemble activity, while maintaining unit599

co-activation. 3) Poisson surrogate “shuffle”: we estimated each unit’s mean firing rate across all600

PBEs, and then produced surrogate PBEs from independent Poisson simulations according to each601

unit’s mean firing rate. 4) Pooled time-swap shuffle: the order of the binned columns of neural602

activity was randomly permuted across all pooled events, coherently across units. This shuffle has603

been previously used in Bayesian replay detection (Davidson et al., 2009).604

Calculating sparsity and connectivity of the model parameters605

Sparsity of the transitions from individual states (departure sparsity) was measured by calculating606

the Gini coefficient of corresponding rows of the transition matrix (Hurley and Rickard, 2009). The607

Gini coefficient is a measure of how variable the values of this probability distribution are, with608

equality across states corresponding to a coefficient of zero (minimal sparsity), and a singular609

distribution with a probability-one transition to a single other state corresponding to a coefficient610

of one (maximal sparsity). The sparsity of the full transition matrix was calculated by averaging611

the Gini coefficient across rows. For analyses of PBE models from linear tracks, we computed the612

mean sparsity across states for each of the 250 surrogate datasets, and these means were used to613

generate the box plots of Figure 2c. Note that for the actual data, we generate a distribution by614

randomly initializing the model 250 times and calculating the mean sparsity over all initializations.615

For analyses of models learned from PBEs in open fields (and the linear track comparison with616

50 states), we created 50 surrogates/random initializations (Figure 6–Figure Supplement 1). To617

compare across sessions, we calculated the mean sparsity by averaging over all 250 surrogate618

datasets to obtain a single mean sparsity per session, so that n = 18 per-session means were used619

to create the box-plots of Figure 2e.620
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Firing rates can be highly variable for different units. Thus, when evaluating the sparsity of621

the observation matrix, we measured the extent to which individual units were specifically active622

in a few states by calculating the Gini coefficients of the rows of the observation matrix. As with623

transitions, we calculated mean sparsity across units for each surrogate dataset (e.g., linear track,624

Figure 2d; open field, Figure 6–Figure Supplement 2), and we then averaged over all surrogate625

datasets to obtain a per-session average, used in Figure 2f.626

Model connectivity and sequences627

To measure the degree of sequential connectivity within the graph corresponding to the transition628

matrix—with nodes and edges representing the states and transitions, respectively—we developed629

an algorithm for measuring the length of the longest path that can be taken through the graph. This630

method is analogous to the “depth-first search” algorithm for traversing the graph’s tree structure631

without backtracking. First, we made an adjacency matrix for a corresponding unweighted directed632

graph by binarizing the transition matrix using a threshold of 0.2 on the transition probabilities.633

Starting from each node, we then found the longest path that ended at either a previously visited634

node or a terminal node (a node without any outgoing edges). To compare models trained on actual635

versus surrogate datasets, we adjusted the thresholds to match the average degree (defined as the636

average number of edges per node) between the models, thus ruling out possible effects due to637

differences in the number of graph edges. We carried out this analysis on the same set of models638

that were generated for analyzing sparsity. To compare across sessions, we calculated the median639

maximum path length for each session (n = 18) and used the per-session medians to generate box640

plots of Figure 2–Figure Supplement 3c.641

Latent state place fields642

To calculate the latent state place fields, we first identified bouts of running by identifying periods643

when animals were running (speed > 10 cm/s). We then binned the spiking during each of these644

bouts in 100 ms bins. Using the forward-backward algorithm Rabiner (1989) and the HMMmodel645

parameters learned from PBEs, we decoded each bout into a sequence of latent state probability646

distributions, Pr(qt|Ot). Using the track positions corresponding to each time bin, we then found the647

average state distribution for each position bin, xp, and normalized to yield a distribution for each648

state, Pr(xp|qt = i).649

Decoding position from latent state sequences650

We used the lsPFs to decode the animal’s position after determining the probability of different651

latent state trajectories during bouts of running. With five-fold cross validation, we estimated lsPFs652

in a training dataset, then used the HMMmodel to decode latent state trajectory distributions from653

ensemble neural activity in the test data. The product of lsPFs and decoded latent state distribution654

at time t is the joint distribution Pr(xp, qt|Ot). We decode position as the mean of the marginal655

distribution Pr
(

xp|Ot
)

.656

Bayesian Replay Detection657

We followed a frequently used Bayesian decoding approach to detect replay in our 1D data (Kloost-658

erman, 2012). For each 20 ms time bin t within a PBE, given a vector comprised of spike counts659

from N units, Ot =
(

o1t o2t … oNt
)

in that bin, the posterior probability distribution over the binned660

track positions was calculated using Bayes’ rule:661

Pr
(

xp|Ot
)

=
Pr(Ot|xp)Pr(xp)

∑P
q=1 Pr(Ot|xq)Pr(xq)

,
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where xp is the center of p-th linearized position bin (of P total bins). We assumed Poisson firing662

statistics, thus the prior probability, Pr
(

Ot|xp,
)

, for the firing of each unit n is equal to663

Pr
(

Ot|xp
)

=
N
∏

n=1
Pr

(

ont|xp,
)

∝
N
∏

n=1
(��np)

ont exp
(

−��(n,p)
)

where � is the duration of time bin (100 ms during estimation, 20 ms during decoding), and �np664

characterizes the mean firing rate of the n-th unit in the p-th position bin. We assumed a uniform665

prior distribution Pr(xp) over the position bins.666

For each PBE, the estimated posterior probability distribution was used to detect replay as667

follows. Many (35,000) lines with different slopes and intercepts were sampled randomly following668

the approach in (Kloosterman, 2012). The Bayesian replay score for a given event was the maximum669

score obtained from all candidate lines, where the score for a particular line was defined as the670

mean probability mass under the line, within a bandwidth (of 3 cm). For time bins during which the671

sampled line fell outside of the extent of the track, themedian probability mass of the corresponding672

time bin was used, and for time bins during which no spikes were observed, we used the median673

probability mass across all on-track time bins. To evaluate the significance of this score, for each674

event we generated 5,000 surrogates of the posterior probability distribution by cycling the columns675

(i.e., for each time bin, circularly permuting the distribution over positions by a random amount)676

and calculated the replay score for each surrogate. The Monte Carlo p-value for each event was677

obtained from the number of shuffled events with replay scores higher than the raw data. The678

threshold for significance was varied as described in the text. For the open field, we used previously679

reported criteria (Pfeiffer and Foster, 2013) to identify replay events from PBEs.680

Replay detection via PBE model congruence681

To identify replay as model congruence, for each PBE, we used the forward-backward algorithm to682

calculate the sequence likelihood Pr(O1,… , OK ), as defined earlier. Using five-fold cross validation,683

the parameters of a HMMwere learned from training PBEs. The sequence score was then calculated684

for each event in the test data. To evaluate the significance of this score, for each event we generated685

5,000 surrogate scores using a computationally-efficient scheme. Specifically, for each surrogate,686

we randomly shuffle the rows of the transition matrix, excepting the diagonal. By maintaining the687

diagonal (i.e., transitions that begin and end in the same state) and leaving the observation model688

unchanged, this shuffle specifically selects against PBEs in which the latent states do not evolve689

in temporal sequences. The Monte Carlo p-value for each event was calculated as the fraction of690

shuffled events with HMM sequence scores higher than the raw data. The threshold for significance691

was varied as described in the text. Note that while we describe this as HMM-congruence, we692

have maintained the diagonal of the transition matrix, which specifically selects against PBEs693

which might be model-congruent by maintaining a single state over many time bins. In reality694

there are other dimensions of the HMM that we could assess congruence against, for example695

the observation model, the initial state distribution, or combinations of these and the transition696

matrix. In comparing against Bayesian decoding, our current definition seemed most appropriate697

for sequence detection, but we can imagine future studies expanding on our approach.698

Human scoring and detection comparison699

We organized a group of human scorers to visually evaluate whether individual PBEs should700

be described as replay. More specifically, scorers were only presented with Bayesian decoded701

probability distributions such as those in Figure 4a, but without access to the spike raster or any702

additional information. The scorers included six graduate students (including one of the authors)703

and two undergraduates, all of whom were generally familiar with the concept of hippocampal704

replay. We built an automatic presentation system which would display each event in random order,705

and record one of six possible scores: “excellent” (highly sequential with no jumps and covering706

most of the track), “good” (highly sequential with few or no jumps), “flat” (decoded position stayed707
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mostly in the same place, i.e. no temporal dynamics), “uncertain” (some semblance of structure,708

but not enough to fall into any of the previous categories) or “noise” (no apparent structure, or709

nonsensical trajectories such as teleportation). An event was then designated as replay if it was710

labeled as “excellent” or “good” by a majority of scorers (ties were labeled as non-replay).711

To calculate an ROC curve for replay detection algorithms, we used our shuffle statistics for each712

event to create a vector which related the significance threshold (e.g., 99%) to the label supplied by713

the algorithm (i.e., significant replay or not). Then, as a function of threshold, the sensitivity (fraction714

of true positives identified) and selectivity (fraction of true negatives identified) were averaged715

over events to yield an ROC curve. To evaluate whether the AUC differed between Bayesian and716

model-congruence techniques we used a bootstrap approach. To generate a null hypothesis, we717

combined the event/threshold vectors from both groups, and then sampled two random groups (A718

and B) with replacement from the pooled data. The AUCs for these two random groups of events719

were measured, and a distribution for the difference between the randomly chosen AUCs was720

calculated. The two-sided p-value we report is the fraction of differences in random AUCs which are721

more extreme than the actual difference.722

HMMmodel quality across sessions723

In order to understand the extent to which an HMM trained on PBEs from a given session contained724

sequentially-structured temporal dynamics, we calculated the “session quality” (equivalently model725

quality) as follows. Again using five-fold cross validation, we learn an HMM on the training subset of726

PBEs, and score (using the forward-backward algorithm, as before), the remaining subset of test727

PBEs. Then, we also score a pooled time-swap surrogate of the test PBEs and we repeat this pooled728

time-swap scoring n = 2500 times. Finally, we obtain a z score for each PBE by comparing the score729

from the actual test PBE, to the distribution of pooled time-swap scores of the corresponding PBE.730

The session quality is then defined as the average of these z scores, over all events in a session.731

This measure of session quality was then used to detect the presence of putative remote replay732

events or other extra-spatial structure in PBEs, since a high session quality after removing local733

Bayesian significant events is highly suggestive of remaining (unexplained) sequential structure.734

Software and data analysis735

Data analyses were performed usingMATLAB and Python. Jupyter notebooks (using Python) are avail-736

able at https://github.com/kemerelab/UncoveringTemporalStructureHippocampus, where most of737

the results presented here are reproduced. We have also developed and open-sourced a Python738

package (namely nelpy) to support the analyses of electrophysiology data with HMMs, which is739

available from https://github.com/nelpy (Ackermann et al., 2018).740

Acknowledgments741

The authors would like to thank the reviewers for their valuable feedback, as well as MP Karlsson,742

MF Carr, and LM Frank for making their w-maze data available on crcns.org.743

References744 Ackermann E, Chu J, Dutta S, Kemere C, Nelpy: neuroelectrophysiology object model and data analysis in745

Python; 2018. doi: 10.5281/zenodo.1219790. https://github.com/nelpy.746

Aronov D, Nevers R, Tank DW. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit.747

Nature. 2017; 543(7647):719.748

Buhry L, Azizi AH, Cheng S. Reactivation, replay, and preplay: how it might all fit together. Neural plasticity.749

2011; 2011.750

Buzsáki G. Hippocampal sharp waves: their origin and significance. Brain research. 1986; 398(2):242–252.751

Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;752

31(3):551–570.753

23 of 26

https://github.com/kemerelab/UncoveringTemporalStructureHippocampus
https://github.com/nelpy
crcns.org
10.5281/zenodo.1219790
https://github.com/nelpy


Manuscript submitted to eLife

Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hip-754

pocampus. 2015; 25(10):1073–1188.755

Buzsáki G, Vanderwolf CH, et al. Cellular bases of hippocampal EEG in the behaving rat. Brain Research Reviews.756

1983; 6(2):139–171.757

Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory758

consolidation and retrieval. Nature neuroscience. 2011; 14(2):147–153.759

Chen Z, Gomperts SN, Yamamoto J, Wilson MA. Neural representation of spatial topology in the rodent760

hippocampus. Neural computation. 2014; 26(1):1–39.761

Chen Z, Kloosterman F, Brown EN, Wilson MA. Uncovering spatial topology represented by rat hippocampal762

population neuronal codes. Journal of computational neuroscience. 2012; 33(2):227–255.763

Chen Z, Wilson MA. Deciphering Neural Codes of Memory during Sleep. Trends in Neurosciences. 2017; .764

Cheng S, Frank LM. New experiences enhance coordinated neural activity in the hippocampus. Neuron. 2008;765

57(2):303–313.766

Cheng S, Frank LM. The structure of networks that produce the transformation from grid cells to place cells.767

Neuroscience. 2011; 197:293–306.768

Chrobak JJ, Buzsáki G. High-frequency oscillations in the output networks of the hippocampal–entorhinal axis769

of the freely behaving rat. Journal of neuroscience. 1996; 16(9):3056–3066.770

Dabaghian Y, Brandt VL, Frank LM. Reconceiving the hippocampal map as a topological template. Elife. 2014;771

3:e03476.772

Davidson TJ, Kloosterman F, Wilson MA. Hippocampal replay of extended experience. Neuron. 2009; 63(4):497–773

507.774

Deppisch J, Pawelzik K, Geisel T. Uncovering the synchronization dynamics from correlated neuronal activity775

quantifies assembly formation. Biological cybernetics. 1994; 71(5):387–399.776

Diba K, Buzsáki G. Forward and reverse hippocampal place-cell sequences during ripples. Nature neuroscience.777

2007; 10(10):1241–1242.778

Diekelmann S, Born J. The memory function of sleep. Nature Reviews Neuroscience. 2010; 11(2):114–126.779

Dupret D, O’neill J, Pleydell-Bouverie B, Csicsvari J. The reorganization and reactivation of hippocampal maps780

predict spatial memory performance. Nature neuroscience. 2010; 13(8):995–1002.781

Ego-Stengel V, Wilson MA. Disruption of ripple-associated hippocampal activity during rest impairs spatial782

learning in the rat. Hippocampus. 2010; 20(1):1–10.783

Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nature Reviews784

Neuroscience. 2014; 15(11):732.785

Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake786

state. Nature. 2006; 440(7084):680–683.787

Frank LM, Stanley GB, Brown EN. Hippocampal plasticity acrossmultiple days of exposure to novel environments.788

Journal of Neuroscience. 2004; 24(35):7681–7689.789

Fruchterman TMJ, Reingold EM. Graph Drawing by Force-directed Placement. Software – Practice & Experience.790

1991; 21(11):1129–1164.791

Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of hippocampal ripples792

impairs spatial memory. Nature neuroscience. 2009; 12(10):1222–1223.793

Grosmark AD, Buzsáki G. Diversity in neural firing dynamics supports both rigid and learned hippocampal794

sequences. Science. 2016; 351(6280):1440–1443.795

Gupta AS, van der Meer MA, Touretzky DS, Redish AD. Hippocampal replay is not a simple function of experience.796

Neuron. 2010; 65(5):695–705.797

24 of 26



Manuscript submitted to eLife

Hurley N, Rickard S. Comparing measures of sparsity. IEEE Transactions on Information Theory. 2009;798

55(10):4723–4741.799

Inostroza M, Binder S, Born J. Sleep-dependency of episodic-like memory consolidation in rats. Behavioural800

brain research. 2013; 237:15–22.801

Jadhav SP, Kemere C, German PW, Frank LM. Awake hippocampal sharp-wave ripples support spatial memory.802

Science. 2012; 336(6087):1454–1458.803

Karlsson MP, Carr MF, Frank LM, Simultaneous extracellular recordings from hippocampal areas CA1 and CA3804

(or MEC and CA1) from rats performing an alternation task in two W-shapped tracks that are geometrically805

identically but visually distinct. CRCNS.org; 2015. doi: 10.6080/K0NK3BZJ. http://dx.doi.org/10.6080/K0NK3BZJ.806

Karlsson MP, Frank LM. Network dynamics underlying the formation of sparse, informative representations in807

the hippocampus. Journal of Neuroscience. 2008; 28(52):14271–14281.808

Karlsson MP, Frank LM. Awake replay of remote experiences in the hippocampus. Nature neuroscience. 2009;809

12(7):913–918.810

Kemere C, Carr MF, Karlsson MP, Frank LM. Rapid and continuous modulation of hippocampal network state811

during exploration of new places. PloS one. 2013; 8(9):e73114.812

Kemere C, Santhanam G, Byron MY, Afshar A, Ryu SI, Meng TH, Shenoy KV. Detecting neural-state transitions813

using hidden Markov models for motor cortical prostheses. Journal of neurophysiology. 2008; .814

Kloosterman F. Analysis of hippocampal memory replay using neural population decoding. Neuronal Network815

Analysis: Concepts and Experimental Approaches. 2012; p. 259–282.816

Kudrimoti HS, Barnes CA, McNaughton BL. Reactivation of hippocampal cell assemblies: effects of behavioral817

state, experience, and EEG dynamics. Journal of Neuroscience. 1999; 19(10):4090–4101.818

Larkin MC, Lykken C, Tye LD, Wickelgren JG, Frank LM. Hippocampal output area CA1 broadcasts a generalized819

novelty signal during an object-place recognition task. Hippocampus. 2014; 24(7):773–783.820

Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron.821

2002; 36(6):1183–1194.822

Logothetis NK, Eschenko O, Murayama Y, Augath M, Steudel T, Evrard H, Besserve M, Oeltermann A.823

Hippocampal-cortical interaction during periods of subcortical silence. Nature. 2012; 491(7425):547–553.824

McClelland JL, McNaughton BL, O’reilly RC. Why there are complementary learning systems in the hippocampus825

and neocortex: insights from the successes and failures of connectionist models of learning and memory.826

Psychological review. 1995; 102(3):419.827

Nádasdy Z, Hirase H, Czurkó A, Csicsvari J, Buzsáki G. Replay and time compression of recurring spike sequences828

in the hippocampus. Journal of Neuroscience. 1999; 19(21):9497–9507.829

O’Keefe J. Place units in the hippocampus of the freely moving rat. Experimental neurology. 1976; 51(1):78–109.830

Pfeiffer BE, Foster DJ. Hippocampal place-cell sequences depict future paths to remembered goals. Nature.831

2013; 497(7447):74–79.832

Pfeiffer BE, Foster DJ. Autoassociative dynamics in the generation of sequences of hippocampal place cells.833

Science. 2015; 349(6244):180–183.834

Prince TM, Wimmer M, Choi J, Havekes R, Aton S, Abel T. Sleep deprivation during a specific 3-hour time window835

post-training impairs hippocampal synaptic plasticity and memory. Neurobiology of learning and memory.836

2014; 109:122–130.837

Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings838

of the IEEE. 1989; 77(2):257–286.839

Radons G, Becker J, Dülfer B, Krüger J. Analysis, classification, and coding of multielectrode spike trains with840

hidden Markov models. Biological cybernetics. 1994; 71(4):359–373.841

Rodriguez P, Levy WB. A model of hippocampal activity in trace conditioning: Where’s the trace? Behavioral842

Neuroscience. 2001; 115(6):1224.843

25 of 26

CRCNS.org
http://dx.doi.org/10.6080/K0NK3BZJ


Manuscript submitted to eLife

Siapas AG, Wilson MA. Coordinated interactions between hippocampal ripples and cortical spindles during844

slow-wave sleep. Neuron. 1998; 21(5):1123–1128.845

Silva D, Feng T, Foster DJ. Trajectory events across hippocampal place cells require previous experience. Nature846

neuroscience. 2015; 18(12):1772–1779.847

Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory848

consolidation and integration. Neuron. 2014; 81(1):12–34.849

Yamamoto J, Tonegawa S. Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended850

Quiet Awake Replay. Neuron. 2017; 96(1):217–227.851

26 of 26



Manuscript submitted to eLife

lo
g 

lik
el

ih
oo

d:
 a

ct
ua

l -
 ti

m
e 

sw
ap

lo
g 

lik
el

ih
oo

d:
 a

ct
ua

l -
 te

m
po

ra
l

a

b

Figure 1–Figure supplement 1. Actual cross-validated test data and surrogate test data evaluated
in actual-data-optimized HMMs for all 18 linear track sessions. For each session, we performed

five-fold cross validation to score the validation (=test) set in an HMM that was learned on the

corresponding training set. In addition, two surrogate datasets of the validation data (obtained by

either temporal shuffle or time-swap shuffle) were scored in the same HMM as the actual validation

data. k = 50 shuffles of each event and of each type were performed. a. Difference between
the data log likelihoods of actual and time-swap surrogate test events, evaluated in the actual

train-data-optimized models. b. Same as in a., except that the differences between the actual
data and the temporal surrogates are shown. For each of the n = 18 sessions, the actual test data
had a significantly higher likelihood than either of the shuffled counterparts (p < 0.001, Wilcoxon
signed-rank test). Sessions are arranged first by animal, and then by number of PBEs, in decreasing

order.
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Figure 2–Figure supplement 1. We trained HMMs on neural activity during PBEs (in 20 ms bins),
and asked how sparse the resulting state transitions were. In particular, we calculated the Gini

coefficient for each row of our state transition matrix, so that the Gini coefficient for a particular row

reflects the sparsity of state transitions from that state (row) to all other states (so-called “departure

sparsity”). A high (close to one) Gini coefficient implies that the state is likely to only transition to

a few other states, whereas a low (close to zero) Gini coefficient implies that the state is likely to

transition to many other states. For each transition matrix, we computed the mean departure

sparsity for n = 250 initializations, and for n = 250 shuffled counterparts for each of the surrogate
datasets (a. time-swap shuffle, b. temporal shuffle, c. Poisson surrogate), and in each case we
show the difference between the actual test data, and the surrogate test data. The actual data

are significantly more sparse than both the temporal and time-swap surrogates for all sessions

(p < 0.001, Mann–Whitney U test) and significantly more sparse than the Poisson surrogate for 14 of
the 18 sessions (p < 0.001, Mann–Whitney U test).
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Figure 2–Figure supplement 2. Using the same PBE models and surrogate datasets (n = 250
shuffles each) as in Figure 2–Figure Supplement 1, we investigated the sparse participation of
neurons/units in our models by calculating the Gini coefficient of each row (that is, for each unit) of

the observation matrix. A high Gini coefficient implies that the unit is active in only a small number

of states, whereas a low Gini coefficient implies that the unit is active in many states. For each

initialization / shuffle, we calculate the mean Gini coefficient over all units, and the differences

between those obtained using actual data and those obtained using surrogate data are shown:

differences between actual and a. time-swap, b. temporal, and c. Poisson surrogates. We find
that the actual data are significantly more sparse than the temporal and Poisson surrogates for

most of the sessions (p < 0.001, Mann–Whitney U test), but that for many (10 out of 18) sessions,
there is no significant difference between the mean row-wise observation sparsity of the actual

data compared to the time-swap surrogate. This is an expected result, since the time-swap shuffle

leaves the observation matrix largely unchanged.

854



Manuscript submitted to eLife

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

session

−20

−10

0

10

pa
th

 le
ng

th
: a

ct
ua

l -
 p

oi
ss

on

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

session

−10

−5

0

5

10

15

pa
th

 le
ng

th
: a

ct
ua

l -
 te

m
po

ra
l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

session

−10

−5

0

5

10

15
pa

th
 le

ng
th

: a
ct

ua
l -

 ti
m

e 
sw

ap

ac
tu
al

te
m
po

ral

tim
e s

wap

Po
iss

on

5

10

15

20

m
ax

im
um

 p
at

h 
le

ng
th

ns

* **

1

2
3

4

5

6

7

8

9 10

11

12

13

14

15
16

17

18
19

20

21

22

23

24
25

26

27

28

29

30

5

10

15

ac
tu
al

te
m
po

ral

tim
e s

wap

Po
iss

on

m
ax

im
um

 p
at

h 
le

ng
th

a b c

d

e

f

*** ***
***

Figure 2–Figure supplement 3. We calculated the longest path within an unweighted directed
graph corresponding to the transition matrices of HMMs, with nodes representing states and

edges reflecting the transition probabilities (see Materials and Methods). a. The graph—displayed
using the “force-directed layout” (Fruchterman and Reingold, 1991)—represents a model trained on
actual data. For illustration purposes, we ignored transition probabilities below 0.1. The green path

shows the longest path in the example. b. For this example session, we computed the maximum
path length (the number of nodes in the longest path) for actual and corresponding shuffle datasets

(temporal, time-swap, and Poisson) (n = 250 initializations / shuffles). c. The panel shows aggregate
results built of median maximum path lengths from all sessions. We find that the actual data

results in longer paths compared to time-swap (p = 0.008, Mann–Whitney U test) and temporal
surrogate datasets (p = 0.04, Mann–Whitney U test). On the contrary, no significant difference is
found in comparison with the Poisson datasets (p = 0.57, Mann–Whitney U test). Nevertheless, due
to non-sparseness of the observation matrix for a Poisson model (Figure 2–Figure Supplement 2),
in most instances these paths correspond to highly overlapping ensemble sequences. In panels

d–f, difference between maximum path lengths obtained from actual data and surrogate datasets
are shown separately for all sessions : actual versus d. time-swap, e. temporal, and f. Poisson. The
data results in longer paths compared to time-swap and temporal shuffle datasets in most sessions

(15 out of 18) (p < 0.001, Mann–Whitney U test), though in only five sessions compared to Poisson
surrogate datasets.
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Figure 3–Figure supplement 1. We investigated to what extent our PBE models encoded informa-
tion related to the animal’s positional code by learning an additional mapping from the latent-state

space to the animal’s position (resulting in a latent-space place field, lsPF), and then using this

mapping, we decoded run epochs to position and assessed the decoding accuracy. a. We computed
the median position decoding accuracy (via the latent space) for each session on the linear track

(n = 18 sessions) using cross validation. In particular, we learned a PBE model for each session, and
then using cross validation we learned the latent space to animal position mapping on a training

set, and recorded the position decoding accuracy on the corresponding test set by first decoding

to the state space using the PBE model, and then mapping the state space to the animal position

using the lsPF learned on the training set. The position decoding accuracy was significantly greater

than chance for each of the 18 sessions (p < 0.001, Wilcoxon signed-rank test). b. For an example
session, we calculated the median decoding accuracy as we varied the number of states in our

PBE model (n = 30 realizations per number of states considered). Gray curves show the individual
realizations, and the black curve shows the mean decoding accuracy as a function of the number of

states. The decoding accuracy is informative over a very wide range of number of states, and we

chose m = 30 states for the analysis in the main text. c. For the same example session, we show the
lsPFs for different numbers of states. The lsPFs are also informative over a wide range of number

of states, suggesting that our analyses are largely insensitive to this particular parameter choice

(the number of states). The coloration of the lsPFs is only for aesthetic reasons.
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Figure 4–Figure supplement 1. a. The number of Bayesian significant PBEs, as well as the total
number of PBEs are shown for each session (n = 18) when using a significance threshold of 99%.
We find that 57% of PBEs (1064 of 1883) are Bayesian significant at this threshold. When using this

same threshold for the model-congruence (HMM) significance testing, we find that only 35% of

PBEs (651 of 1883) are model congruent. In order to compare the Bayesian and model-congruence

approaches more directly, we therefore lowered the model-congruence threshold to 94.46%, at

which point both methods had the same number of significant events (1064 of 1883). b. For each
Bayesian significance threshold, we can determine the corresponding model-congruence threshold

that would result in the same number of significant PBEs. c. Using the thresholds from b. such
that at each point, both Bayesian and model-congruence approaches have the same number of

significant PBEs, we calculate the event agreement between the two approaches. We note that

our chosen threshold of 57% significant events has among the worst agreement between the two

approaches.
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Figure 5–Figure supplement 1. a. Manual scoring results from 8 human scorers (six individuals
scored n = 1883 events, two individuals scored a subset of n = 1423 events). Events were presented
to each participant in a randomized order, and individuals were allowed to go back to modify their

results before submission. Here, events are ordered according to individual #8’s classifications.

b. The model-congruence (HMM) approach appears to have higher accuracy when the session
quality is higher (R2 = 0.17, F = 2.9), which is consistent with our expectation that we need many
congruent events in the training set in order to learn a consistent and meaningful model. c. The
session quality is strongly correlated with the number of PBEs recorded within a session (R2 = 0.96,
F = 392.6).
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Figure 6–Figure supplement 1. Similar to the linear track (one dimensional) case, we find that
models learned on actual open field PBE data are significantly more sparse (here showing mean

departure sparsity) than their shuffled (m = 50 shuffles) counterparts. This is true for each of
the n = 8 open field sessions (p < 0.001, Mann–Whitney U test). a. Difference [in departure Gini
coefficients] between actual and time-swap test data, b. between actual and temporal test data,
and c. between actual and Poisson surrogate data.
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Figure 6–Figure supplement 2. a. Difference [in observation sparsity Gini coefficients across
states] between actual and time-swap test data, b. between actual and temporal test data, and c.
between actual and Poisson surrogate data. Similar to the linear track (one dimensional) case, we

find that the observation sparsity across states for actual data are significantly greater than that

of both the b. temporal and c. Poisson surrogates (for each session, p < 0.001, Mann–Whitney U
test), and that a. for some sessions, there are no significant differences between the actual and
time-swap surrogates.
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Figure 6–Figure supplement 3. a. lsPFs for 49 of the 50 latent states from an example session. b.
(Top) Effect of model-congruence threshold on the number of significant PBEs. (Bottom) Compari-

son matrix between Bayesian replay detection and our model-congruence approach, where the

threshold was chosen to match the total number of significant events pooled over all 8 sessions. c.
Comparison between number of significant Bayesian events vs number of significant events using

our model-congruence approach, when choosing the threshold as in b.. Sessions are ordered in
decreasing numbers of total PBEs. Note that session 1 is a significant outlier, causing mismatches

between many other sessions (2, 5, 7, 8), suggesting that matching on a per-session basis may be

more appropriate in this case. d. Median position decoding error (via the latent space and lsPFs)
was evaluated using cross-validation in an example session (n = 30 realizations for each model
considered, shown in gray, mean shown in black), indicating that (i) the PBE-learned latent space

encodes underlying spatial information, and (ii) that our PBE models are informative about the

underlying position over a wide range of numbers of states.
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Figure 6–Figure supplement 4. a. Three example PBEs are shown that were classified as non-
significant by both the Bayesian and model-congruence approaches. The top row shows the PBEs

decoded with place fields using a Bayesian decoder in 20 ms bins, with a 5 ms stride. The bottom

row shows the same events, but decoded in 20 ms non-overlapping time bins using the lsPFs. b.
Three example PBEs are shown that were classified as significant replay by the Bayesian approach,

but not by the model-congruence approach. c. Three example PBEs are shown that were classified
as significant replay by the model-congruence approach, but not by the Bayesian approach. d.
Three example PBEs are shown that were classified as significant by both approaches.
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