
Mulitchannel Real Time Spike Sorting for Decoding Ripple Sequences

Ankit Sethi1 and Caleb T. Kemere1,2

Abstract— In the CA1 region of the rat hippocampus, fast
field oscillations termed sharp wave ripples have been identified
as playing a crucial role in memory formation and learning.
During ripple activity, particular sequences of neurons fire in
a phenomena called replay. So termed because the spiking
encodes patterns of past experiences, the exact role of the
content of replay is an active subject of investigation in order to
determines its relationship with learning and memory guided
decision making. A need arises for systems that can decode
replay activity during ripples in real time. This necessitates
fast algorithms for both spike sorting and ripple detection with
the lowest possible latency. A low latency implementation makes
possible feedback experiments where decoded ripple sequences
can, with minimal delay, trigger stimulating pulses that can
disrupt particular kinds of decoded information before they
can contribute to behavior. In this study, we optimize and
implement a recently proposed online spike sorting algorithm
for an increasingly popular electrophysiological software suite
and measure improvements that greatly enhance its multi-
tetrode decoding capabilities. Synchronizing with online ripple
detection, this novel framework will allows experimenters to
study the effects of disrupting replay activity with a degree of
granularity hitherto unavailable.

I. INTRODUCTION

Hippocampal replay is a sequential reactivation of neu-
ronal sequences that resemble activity during an animals
awake state but at an increased time scale[1]. Replay is
believed to have a role in memory consolidation of spatial
tasks[2]. Sharp wave ripples are fast oscillations (>150 Hz)
that are associated with replay in the hippocampus[3]. To
establish a causal link memory consolidation and replay it
essential to detect ripples and decode concurrent replay infor-
mation for feedback experiments that seek to disrupt specific
patterns of replay. This requires a combination of online
spike sorting and ripple detection. The authors of [4] have
proposed an algorithm for real time spike sorting that they
called OPASS (Online gamma Process Autoregressive Spike
Sorting). This algorithm possesses several attractive features
a) it is non-parametric. b) it offers real time performance
and c) models time-varying statistics. The implementation
devised by them is unoptimized but works in real time for
a single channel and four-channel scenario, though in the
latter case it takes 75% of data length in execution time.
However, in the current state of electrophysiology, neural
recordings often usually involve at least 16 electrodes with
4 channels each, giving us a minimum of 64 total channels
that needs to be decoded. Recording experiments with up
to 512 channels have also been performed [5] and seem

1Department of Electrical and Computer Engineering, Rice University,
Houston ankit.sethi@rice.edu

2Department of Neuroscience, Baylor College of Medicine, Houston
caleb.kemere@rice.edu

to be the future norm for such research. Specifically, given
the difficult nature of detecting replay in awake state [6], it
is important to have the ability to perform spike sorting of
several tetrodes simultaneously. Additionally, the algorithm
in [4] is operated at a sampling rate of 10kHz while it is
common in studies to record at data rates of up to 30-40
kHz [7]. This further increase in data rate by a factor of
3-4 represents an additional challenge for online systems.
Our goal was to implement a low-latency online algorithm
for spike sorting in C++ within the framework of open-ephys
and combine it with a previously presented algorithm for low
latency ripple detection [8] to perform decoding of replay
firing patterns during ripple sequences. The eventual goal
is to use this to perform closed loop experiments involving
probing stimuli that can react based on real time decoding of
information in ripple sequences. The first section introduces
the existing form of OPASS and our proposed modifications
along with a revised algorithm that significantly lowers the
slope of algorithm time required per number of samples
processed. Next, we present an outline of our software
framework and some discussion about the tools used to create
a version ready for use in experiments. In the next section, we
explain how ripples and spikes data is concurrently extracted
and combined. Finally, we present the results of timing tests
to illustrate the improvements in execution time that bend
the slope downwards enough to make the online decoding
of several tetrodes feasible, and conclude with a discussion
about directions for further improvement and investigation.

II. THE OPASS ALGORITHM

A. Structure

The algorithm begins by assigning a series of prior proba-
bilities for spike shapes and encountering a new spike. Data
is processed in batches of L = 500 (at 10kHz) samples. A
rolling time window moves across the batch and calculates
the likelihoods of the data segment being a) noise, b) a
previously identified neuron or c) a new neuron. Posterior
distributions of all putative neurons and their past spike times
are maintained and updated after every new detection. C is
the number of neurons found up to the current iteration, lθ
are the prior likelihoods of seeing a new neuron in a Chinese
Restaurant Process (CRP), A is the dictionary of K columns,
Σ is the noise correlation matrix (invertible due to Toeplitz
AR(1) structure and P >> 1), and Q(c) is the posterior
shape distribution of neuron c. The size of a window is P
samples. A full description may be found in [4].

Algorithm:

7th Annual International IEEE EMBS Conference on Neural Engineering
Montpellier, France, 22 - 24 April, 2015

956978-1-4673-6389-1/15/$31.00 ©2015 European Union

C = 1;
xw : L× (L− P) matrix of sliding batch segments;
while DAQ active do

Update prior lθ(1 : C) using the CRP
Update noise likelihood:
lnoise = −P2 log(2π)+ 1

2 log(|Σ−1|)− 1
2xw

TΣ−1xw

for c = 1 : C − 1 do
Qt(c) = λ−1

clus(c) +R−1(c)
Q(c) = Σ + AQt(c)A

T

x̄w = xw −Aµ(:, c)
Update likelihood of neuron c;
lon(c) =
−P2 −

1
2 log(|Q−1(c)|)− 1

2 x̄wQ−1(c)x̄w

end
Qt = λ−1

clus(C) + R−1(C)
Q = Σ + AQtA

T

Update likelihood of new neuron C;
lon(C) =
−P2 log(2π)− 1

2 log(|Q−1(C)|)− 1
2xwQ−1(C)xw

lon = lon + lθ
H = lon −max(lon)
lthr = lnoise −max(lon)− log

∑
(exp(H))

idx = find (lthr < T)
if size (idx) > 0 then

Find spike peak and offset idx accordingly;
Find which neuron ID most likely candidate:
Cnew = max(lon(idx))
if Cnew > C − 1 then

C = Cnew
end
update R, λclus and others.
calculate K-dim dictionary projection: ŷ

end
end

Fig. 1. OPASS algorithm (condensed)

B. Changes for real-time implementation

The following algorithmic changes were made:

1) OPASS processes data in a “small” batch of L (= 500)
samples. A window of length R (≈ 50) slides over
the batch length in increments of one sample. Likeli-
hoods for the entire batch are calculated after which
it searches for a likelihood value crossing a threshold.
With the objective of keeping latency to a minimum,
we removed the batch requirement, directly processing
the incoming data in firehose fashion. Circular buffers
of length R for each channel were used as windows,
reducing the latency from L to R samples.

2) When OPASS detects a neuron, it searches among the
near-future likelihoods over a time period of one spike
length to identify the peak of the spike. This is needed
for proper alignment of the detected spike before
updating distribution parameters. Since likelihoods for
the entire batch are already available at this point, this
step is trivial. Our version processes incoming samples

as they comes (save for the circular buffer latency), so
it goes into a search mode after a threshold crossing
where it briefly stops looking for further neurons, but
keeps calculating likelihoods for successive windows
over the range of a spike length. It then identifies
the window with waveform most likely to be a spike,
aligns, and proceeds with parameter updating.

3) All invariants terms in the likelihood equations were
pre-calculated. The noise autocorrelation matrix Σ was
estimated from the data before sorting and its inverse
and determinant were also pre-calculated and stored.

4) Workarounds were devised for regularly updated ma-
trix inverse operations. In timing tests, it was found
that the most computationally expensive steps are in
updating Q and then calculating Q−1 and |Q−1|.
These costs were mitigated in two ways:

a) Q changes after each neuron detection. Instead
of calculating Q for every window, it was up-
dated only after successful detections and reused
otherwise.

b) The update equation for Q, Q = Σ + AQtA
T ,

involves a low rank matrix (Qt) changing with
each update. The matrix inversion lemma and its
corollary for determinants can be profitably used
to reduce calculations since Qt is of dimension
K×K. K � P since K is in the range of 2−5
while P is between 30 − 50, depending on the
window size.

C. Revised Algorithm

Our revised algorithm proceeds as outlined below. x(n)
represents the incoming data for one channel with n denoting
the most recent time index.

The revised algorithm is presented in Figure 2. For mul-
tiple channels, this procedure is easily generalized. The full
code is available online at: SpikeSorter Module for Open-
Ephys.

D. Pre- and Post-Processing

The OPASS algorithm utilizes a dictionary based method
to identify spikes. The authors of [4] use spike detection
using power thresholding to store an array of spike wave-
forms. An SVD is applied to this spike dataset and the
first K columns of the left-singular matrix are used for the
dictionary. In testing our implementation we discovered that
the algorithm is sensitive to improper alignment of spikes.
Misalignment results in a dictionary that is less representative
of the underlying neuronal population and during sorting, this
leads to spurious and inordinately high number of putative
neurons being identified. This has important implications
for real time performance: the parameter C (which controls
the number of iterations of the likelihood loop) increments
steadily slowing down the the algorithm and leading to neu-
rons being misidentified and mislabeled. In the multi channel,
multi-electrode case, with little leeway w.r.t. execution time,
this can quickly lead to sub real time performance. The
OPASS algorithm also requires the predetermination of the

957

C = 1;
xw : L× (L− P) matrix of sliding batch segments;
while DAQ active do

Enqueue new sample x(n) in circ. buffer xw

Update prior lθ(1 : C) using the CRP
Update noise likelihood:
lnoise = −P2 log(2π)+ 1

2 log(|Σ−1|)− 1
2xw

TΣ−1xw

for c = 1 : C − 1 do
x̄w = xw −Aµ(:, c)
Update likelihood of neuron c;
lon(c) =
−P2 −

1
2 log(|Q−1(c)|)− 1

2 x̄wQ−1(c)x̄w

end
Update likelihood of new neuron C;
lon(C) =
−P2 log(2π)− 1

2 log(|Q−1(C)|)− 1
2xwQ−1(C)xw

lon = lon + lθ
H = lon −max(lon)
lthr = lnoise −max(lon)− log

∑
(exp(H))

if lthr < T then
spikeDetect = true
search = true, i= 0

end
if spikeDetect = true then

if search = true and i < range then
store lthr, i = i + 1
if i == range then

search = false
end

end
if search = false then

idx = find (min(lthr))
Cnew = max(lon(idx))
if Cnew > C − 1 then

C = Cnew
end
Update R(Cnew), λclus(Cnew) and others
Update Q(Cnew), calculate and store
Q−1(Cnew), |Q−1(Cnew)|
Calculate projection on dict. space ŷ

end
end
Dequeue sample at head of circ. buffer

end

Fig. 2. Revised OPASS algorithm (condensed)

noise autocorrelation matrix Σ if the noise is being modeled
as an AR(1) process. This is also implemented in the pre-
processing stage with dictionary estimation. Care must be
taken in inverting the matrix as there is a risk of close to
not being full rank. However, most matrix libraries provide
methods to check for this. After a spike is detected and
sorted, the algorithm provides us with the following outputs
the timestamp for the spike peak, the spike waveform itself,
the K coefficients of the spike in dictionary-space, and
the neuron ID assigned to the spike. This meta-data is
encapsulated and forwarded to further processing steps for

Fig. 3. Execution time of the original OPASS (1) and the optimized OPASS
(2).

decoding and/or display.

III. SOFTWARE IMPLEMENTATION

The OPASS algorithm was chosen with the view of using a
non-/minimally supervised algorithm for fast online detection
and sorting during recording experiments. Our aim was to
add the implementation as a module to open-ephys, a set
of collaborative, open-sourced software modules for extra-
cellular recordings with a focus towards enabling low cost
high quality multichannel data acquisition and processing.
The open-ephys acquisition board is used in conjunction with
its open-source GUI to display, process, record and save
neural activity. For linear algebra functionality, we turned
to Eigen, because of several attractive features it is header
based, has an easy to use API, open-source license, and
performance rivaling or exceeding most competitors like
LAPACK or Armadillo.

IV. SPIKE SORTING AND RIPPLE DETECTION

In a previous work, we have identified and tested low
latency algorithms for ripple detection and proposed a variant
of the CUSUM algorithm for ripple detection. Towards the
end of decoding replay during ripples, we implemented spike
sorting in a software framework that synchronizes between
online ripple detection and sorting to identify and label spikes
that occur during ripples with minimal latency. Specifically,
a downstream module was developed that reconciles spike
events and ripple events to accurately mark spikes occuring
during ripples in real time. The output from this novel copro-
cessing approach can be used by processing further modules
downstream for online decoding of place cell sequences,
calculating spatial trajectories etc. The modular nature of
open-ephys ensures that algorithmic improvements can be
made in future without affecting the overarching framework.

V. RESULTS

We tested the effect of structural changes to the algorithm
on an Intel Core i5 3.0 Ghz processor and 4 GB RAM.
MATLAB simulations run over 500 iterations for a simulated

958

Fig. 4. Execution time of 45 ms of spike data in C++ implementation in
original (1) and fully optimized (2) form.

dataset showed a drop in execution time (Figure 3). The
mean reduction in execution time is 32.9%. Figure 4 shows
a comparison in execution time for 45 ms of data in the
open-ephys C++ implementation. Here we compared the
speed of the original implementation with the our fully
optimized version. Apart from the structural changes, matrix
optimizations specific to Eigen were also incorporated. The
final version achieves a 92.3% decrease in mean execution
time.

VI. DISCUSSION

One of the issues identified over the course of this project
has been the increase in execution time when spurious
neurons are detected. This may be caused by several issues
sharp bursts of noise, improper alignment in preliminary
spike detection and a high setting for α, the CRP param-
eter that controls the prior probability of detecting a new
neuron. Since the algorithm updates and learns the posterior
distributions of each identified neurons shape, a few spurious
and transient detections are expected to be observed at the
beginning of the sporting. If the total neuron types steadily
accumulates, however, the overhead is liable to be high
since the algorithm then checks for these neuron types in
every time window. In Figure 5 we profiled the performance
drop when a change in yields 5 and 7 detected neurons,
respectively. Two extra detections ends up increasing the
mean execution time by 18%. Some design considerations
that are left unsettled in [4] are the best way to calculate
the dictionary and auto-correlation matrices for tetrodes.
Separate tetrodes are likely to be recording a different signal
from each other, but the channels of a tetrode should be
highly correlated. We estimated the dictionary using the
channel with the best signal quality but it is possible that
the signal from all channels could be optimally combined
for the purposes of this preliminary estimation.

VII. CONCLUSIONS

The improvements in speed achieved enable up to 5
tetrodes to be spike-sorted in real time on standard desktop
hardware. A promising direction for future improvements

Fig. 5. Execution time of an OPASS run with 5 (1) and 7 (2) putative
neurons detected.

is creating a sub-algorithm that monitors the statistics of
detected neurons to identify and de-activate detection of
rarely spiking or spuriously detected neuron patterns. We
united an optimized spike sorting algorithm with a previously
developed ripple detection algorithm. A downstream module
combines event data from both processors to mark sorted
spikes occurring during ripples; this can then be used for
online experiments investigating the content and significance
of replay.

REFERENCES

[1] Buhry, Laure, Amir H. Azizi, and Sen Cheng. “Reactivation, replay,
and preplay: how it might all fit together.” Neural plasticity 2011
(2011).

[2] Carr, Margaret F., Shantanu P. Jadhav, and Loren M. Frank. “Hip-
pocampal replay in the awake state: a potential substrate for memory
consolidation and retrieval.” Nature neuroscience 14, no. 2 (2011):
147-153.

[3] Nakashiba, Toshiaki, Derek L. Buhl, Thomas J. McHugh, and Susumu
Tonegawa. “Hippocampal CA3 output is crucial for ripple-associated
reactivation and consolidation of memory.” Neuron 62, no. 6 (2009):
781-787.

[4] Carlson, David, Vinayak Rao, Joshua T. Vogelstein, and Lawrence
Carin. “Real-Time Inference for a Gamma Process Model of Neural
Spiking.” In Advances in Neural Information Processing Systems, pp.
2805-2813. 2013.

[5] Bernyi, Antal, Zoltn Somogyvri, Anett J. Nagy, Lisa Roux, John D.
Long, Shigeyoshi Fujisawa, Eran Stark, Anthony Leonardo, Timothy
D. Harris, and Gyrgy Buzski. “Large-scale, high-density (up to 512
channels) recording of local circuits in behaving animals.” Journal of
neurophysiology 111, no. 5 (2014): 1132-1149.

[6] Davidson, Thomas J., Fabian Kloosterman, and Matthew A. Wilson.
“Hippocampal replay of extended experience.” Neuron 63, no. 4
(2009): 497-507.

[7] Jadhav, Shantanu P., Caleb Kemere, P. Walter German, and Loren
M. Frank. “Awake hippocampal sharp-wave ripples support spatial
memory.” Science 336, no. 6087 (2012): 1454-1458.

[8] Sethi, Ankit, and Caleb Kemere. “Real time algorithms for sharp wave
ripple detection.” In Engineering in Medicine and Biology Society
(EMBC), 2014 36th Annual International Conference of the IEEE,
pp. 2637-2640. IEEE, 2014.

959

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryList_V1
 qi2base

